×

Skew symmetric normal operators. (English) Zbl 1279.47040

An operator T on a complex Hilbert spaces \(\mathfrak{H}\) is said to be skew symmetric if there exists a conjugate-linear isometric \(C:\mathfrak{H}\to \mathfrak{H}\) so that \(C T C=-T^*\). In view of various results on complex symmetric operators, the authors give a characterization of normal operators which are skew symmetric. Their main results are as follows.
[*] If \(T\in B(\mathfrak{H})\) is normal, then the following are equivalent:
[i] \(T\) is skew symmetric.
[ii] \(T|_{(\mathrm{ker} T)^\perp}\simeq N\oplus(-N)\), where \(N\) is a normal operator on some Hilbert space \(\mathfrak{K}\) with \(E_N(\mathbb{C}- \Sigma)=0\).
[iii] \(T|_{(\mathrm{ker} T)^\perp}\simeq N\oplus(-N)\), where \(N\) is a normal operator on some Hilbert space \(\mathfrak{K}\).
[**] A normal operator \(T\in B(\mathfrak{H})\) is skew symmetric if and only if there are mutually singular measures \(\mu_{\infty}, \mu_{1}{}, \mu_{2}{},\dots\) (some of which may be zero) such that:
[i] \(\mu_j(\delta)=\mu_j(-\delta)\) for any \(1\leq j\leq\infty\) and any Borel subset \(\delta\) of \(\mathbb{C}\).
[ii] \(T\) is unitarily equivalent to the operator \[ N=\bigoplus_{1\leq j\leq\infty}N_j^{(j)}, \] where \(N_j\) is the “multiplication by z” operator on \(L^2(\mu_j)\; (1\leq j\leq \infty)\).

MSC:

47B25 Linear symmetric and selfadjoint operators (unbounded)
47A65 Structure theory of linear operators
Full Text: DOI

References:

[1] Peter Benner, Ralph Byers, Volker Mehrmann, and Hongguo Xu, Numerical computation of deflating subspaces of skew-Hamiltonian/Hamiltonian pencils, SIAM J. Matrix Anal. Appl. 24 (2002), no. 1, 165 – 190. · Zbl 1035.49022 · doi:10.1137/S0895479800367439
[2] Joseph A. Cima, Stephan Ramon Garcia, William T. Ross, and Warren R. Wogen, Truncated Toeplitz operators: spatial isomorphism, unitary equivalence, and similarity, Indiana Univ. Math. J. 59 (2010), no. 2, 595 – 620. · Zbl 1215.47024 · doi:10.1512/iumj.2010.59.4097
[3] John B. Conway, A course in functional analysis, 2nd ed., Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1990. · Zbl 0706.46003
[4] F. R. Gantmacher, Matrizenrechnung. II. Spezielle Fragen und Anwendungen, Hochschulbücher für Mathematik, Bd. 37, VEB Deutscher Verlag der Wissenschaften, Berlin, 1959 (German). F. R. Gantmacher, Applications of the theory of matrices, Translated by J. L. Brenner, with the assistance of D. W. Bushaw and S. Evanusa, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1959. F. R. Gantmacher, The theory of matrices. Vols. 1, 2, Translated by K. A. Hirsch, Chelsea Publishing Co., New York, 1959.
[5] Stephan Ramon Garcia, Aluthge transforms of complex symmetric operators, Integral Equations Operator Theory 60 (2008), no. 3, 357 – 367. · Zbl 1160.47001 · doi:10.1007/s00020-008-1564-y
[6] Stephan Ramon Garcia and Mihai Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1285 – 1315. · Zbl 1087.30031
[7] Stephan Ramon Garcia and Mihai Putinar, Complex symmetric operators and applications. II, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3913 – 3931. · Zbl 1123.47030
[8] Stephan R. Garcia and Mihai Putinar, Interpolation and complex symmetry, Tohoku Math. J. (2) 60 (2008), no. 3, 423 – 440. · Zbl 1171.30011 · doi:10.2748/tmj/1223057737
[9] Stephan Ramon Garcia and Warren R. Wogen, Complex symmetric partial isometries, J. Funct. Anal. 257 (2009), no. 4, 1251 – 1260. · Zbl 1166.47023 · doi:10.1016/j.jfa.2009.04.005
[10] Stephan Ramon Garcia and Warren R. Wogen, Some new classes of complex symmetric operators, Trans. Amer. Math. Soc. 362 (2010), no. 11, 6065 – 6077. · Zbl 1208.47036
[11] Loo-Keng Hua, On the theory of automorphic functions of a matrix variable. II. The classification of hypercircles under the symplectic group, Amer. J. Math. 66 (1944), 531 – 563. · Zbl 0063.02920 · doi:10.2307/2371765
[12] Loo-Keng Hua, On the theory of automorphic functions of a matrix level. I. Geometrical basis, Amer. J. Math. 66 (1944), 470 – 488. · Zbl 0063.02919 · doi:10.2307/2371910
[13] Volker Mehrmann and David Watkins, Polynomial eigenvalue problems with Hamiltonian structure, Electron. Trans. Numer. Anal. 13 (2002), 106 – 118. · Zbl 1065.65054
[14] Volker Mehrmann and Hongguo Xu, Numerical methods in control, J. Comput. Appl. Math. 123 (2000), no. 1-2, 371 – 394. Numerical analysis 2000, Vol. III. Linear algebra. · Zbl 0967.65081 · doi:10.1016/S0377-0427(00)00392-7
[15] N. H. Scott, A new canonical form for complex symmetric matrices, Proc. Roy. Soc. London Ser. A 441 (1993), no. 1913, 625 – 640. · Zbl 0794.15005 · doi:10.1098/rspa.1993.0083
[16] D. C. Sorensen, Passivity preserving model reduction via interpolation of spectral zeros, Systems Control Lett. 54 (2005), no. 4, 347 – 360. · Zbl 1129.93340 · doi:10.1016/j.sysconle.2004.07.006
[17] Sergey M. Zagorodnyuk, On a \?-polar decomposition of a bounded operator and matrices of \?-symmetric and \?-skew-symmetric operators, Banach J. Math. Anal. 4 (2010), no. 2, 11 – 36. · Zbl 1200.47050 · doi:10.15352/bjma/1297117238
[18] Sergey M. Zagorodnyuk, On the complex symmetric and skew-symmetric operators with a simple spectrum, SIGMA Symmetry Integrability Geom. Methods Appl. 7 (2011), Paper 016, 9. · Zbl 1218.44002 · doi:10.3842/SIGMA.2011.016
[19] Sen Zhu and Chun Guang Li, Complex symmetric weighted shifts, Trans. Amer. Math. Soc. 365 (2013), no. 1, 511 – 530. · Zbl 1282.47045
[20] Sen Zhu, Chun Guang Li, and You Qing Ji, The class of complex symmetric operators is not norm closed, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1705 – 1708. · Zbl 1251.47004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.