×

Approximate unitary equivalence to skew symmetric operators. (English) Zbl 1339.47023

A skew symmetric operator is a bounded linear operator \(T\) on a complex separable infinite dimensional Hilbert space \(\mathcal{H}\) which satisfies the relation \(CTC=-T^*\) for some conjugation \(C\) on \(\mathcal{H}\). In [C. G. Li and the author, Proc. Am. Math. Soc. 141, No. 8, 2755–2762 (2013; Zbl 1279.47040)], the authors observed that, for a skew symmetric normal operator \(T\), \(T|_{(\ker T)^\perp}\) can be represented (up to unitary equivalence) as \(N\oplus(-N)\), where \(N\) is a normal operator. It is the aim of the paper under review to classify another class of skew symmetric operators. More precisely, it is shown that a skew symmetric operator \(T\) satisfying \(C^*(T)\cap\mathcal{K}(\mathcal{H})=\{0\}\) is approximately unitarily equivalent to an operator of the form \(A\oplus(-A^t)\) for a certain operator \(A\) on \(\mathcal{H}\) (here \(C^*(T)\) denotes the \(C^*\)-algebra generated by \(T\) and the identity operator on \(\mathcal{H}\), \(\mathcal{K}(\mathcal{H})\) is the ideal of compact operators on \(\mathcal{H}\), while \(A^t\) is a transpose of \(A\), i.e., \(A^t=CA^*C\) for some conjugation \(C\) on \(\mathcal{H}\)). As an application, the author obtains a similar classification for unilateral weighted shifts with nonzero weights.

MSC:

47A65 Structure theory of linear operators
47A58 Linear operator approximation theory
47C15 Linear operators in \(C^*\)- or von Neumann algebras
47B15 Hermitian and normal operators (spectral measures, functional calculus, etc.)

Citations:

Zbl 1279.47040
Full Text: DOI

References:

[1] Benner, P., Byers, R., Mehrmann, V., Xu, H.G.: Numerical computation of deflating subspaces of skew-Hamiltonian/Hamiltonian pencils. SIAM J. Matrix Anal. Appl. 24(1), 165-190 (2002) · Zbl 1035.49022 · doi:10.1137/S0895479800367439
[2] Boersema, J.L.: The range of united \[KK\]-theory. J. Funct. Anal. 235(2), 701-718 (2006) · Zbl 1102.46046 · doi:10.1016/j.jfa.2005.12.012
[3] Chevrot, N., Fricain, E., Timotin, D.: The characteristic function of a complex symmetric contraction. Proc. Am. Math. Soc. 135(9), 2877-2886 (2007). (electronic) · Zbl 1126.47010 · doi:10.1090/S0002-9939-07-08803-X
[4] Connes, A.: A factor not anti-isomorphic to itself. Ann. Math. (2) 101, 536-554 (1975) · Zbl 0315.46058 · doi:10.2307/1970940
[5] Connes, A.: Sur la classification des facteurs de type II, C. R. Acad. Sci. Paris Sér. A-B 281(1), Aii, A13-A15 (1975) · Zbl 0304.46042
[6] Conway, J.B.: A Course in Operator Theory, Graduate Studies in Mathematics, vol. 21. American Mathematical Society, Providence, RI (2000) · Zbl 0936.47001
[7] Davidson, K.R.: \[C^*C\]∗-Algebras by Example, Fields Institute Monographs, vol. 6. American Mathematical Society, Providence, RI (1996) · Zbl 0958.46029
[8] Douglas, R.G.: Banach Algebra Techniques in Operator Theory, 2nd edn, Graduate Texts in Mathematics, vol. 179. Springer, New York (1998) · Zbl 0920.47001
[9] Feldman, N.S.: Essentially subnormal operators. Proc. Am. Math. Soc. 127(4), 1171-1181 (1999) · Zbl 0913.47023 · doi:10.1090/S0002-9939-99-05053-4
[10] Gantmacher, F.R.: The Theory of Matrices, vols. 1, 2 (trans: Hirsch, K.A.). Chelsea Publishing Co., New York (1959) · Zbl 0085.01001
[11] Garcia, S.R., Lutz, B., Timotin, D.: Two remarks about nilpotent operators of order two. Proc. Am. Math. Soc. 142(5), 1749-1756 (2014) · Zbl 1286.47001
[12] Garcia, S.R., Poore, D.E.: On the norm closure of the complex symmetric operators: compact operators and weighted shifts. J. Funct. Anal. 264(3), 691-712 (2013) · Zbl 1270.47019 · doi:10.1016/j.jfa.2012.11.009
[13] Garcia, S.R., Putinar, M.: Complex symmetric operators and applications. Trans. Am. Math. Soc. 358(3), 1285-1315 (2006). (electronic) · Zbl 1087.30031 · doi:10.1090/S0002-9947-05-03742-6
[14] Garcia, S.R., Putinar, M.: Complex symmetric operators and applications. II. Trans. Am. Math. Soc. 359(8), 3913-3931 (2007). (electronic) · Zbl 1123.47030 · doi:10.1090/S0002-9947-07-04213-4
[15] Garcia, S.R., Ross, W.: Recent progress on truncated Toeplitz operators. Fields Inst. Commun. 65, 275-319 (2013) · Zbl 0187.05503 · doi:10.1007/978-1-4614-5341-3_15
[16] Garcia, S.R., Wogen, W.R.: Complex symmetric partial isometries. J. Funct. Anal. 257(4), 1251-1260 (2009) · Zbl 1166.47023 · doi:10.1016/j.jfa.2009.04.005
[17] Gilbreath, T.M., Wogen, W.R.: Remarks on the structure of complex symmetric operators. Integral Equ. Oper. Theory 59(4), 585-590 (2007) · Zbl 1135.47032 · doi:10.1007/s00020-007-1528-7
[18] Guo, K., Ji, Y., Zhu, S.: A \[C^*C\]∗-algebra approach to complex symmetric operators. Trans. Am. Math. Soc. (to appear) · Zbl 1393.47018
[19] Guo, K., Zhu, S.: A canonical decomposition of complex symmetric operators, preprint · Zbl 1389.47042
[20] Hadwin, D.: Closures of unitary equivalence classes. Ph.D. thesis, Indiana University (1975) · Zbl 1277.47040
[21] Hadwin, D.: An operator-valued spectrum. Indiana Univ. Math. J. 26(2), 329-340 (1977) · Zbl 0368.47003 · doi:10.1512/iumj.1977.26.26025
[22] Herrero, D.A.: Approximation of Hilbert Space Operators. Vol. 1, 2nd edn, Pitman Research Notes in Mathematics Series, vol. 224. Longman Scientific and Technical, Harlow (1989)
[23] Hua, L.-K.: On the theory of automorphic functions of a matrix variable. II. The classification of hypercircles under the symplectic group. Am. J. Math. 66, 531-563 (1944) · Zbl 0063.02921 · doi:10.2307/2371765
[24] Hua, L.-K.: On the theory of automorphic functions of a matrix level. I. Geometrical basis. Am. J. Math. 66, 470-488 (1944) · Zbl 0063.02919 · doi:10.2307/2371910
[25] Li, C.G., Zhou, T.T.: Skew symmetry of a class of operators. Banach J. Math. Anal. 8(1), 279-294 (2014) · Zbl 1295.47014 · doi:10.15352/bjma/1381782100
[26] Li, C.G., Zhu, S.: Skew symmetric normal operators. Proc. Am. Math. Soc. 141(8), 2755-2762 (2013) · Zbl 1279.47040 · doi:10.1090/S0002-9939-2013-11759-4
[27] Mehrmann, V., Watkins, D.: Polynomial eigenvalue problems with Hamiltonian structure. Electr. Trans. Numer. Anal. 13, 106-113 (2002) · Zbl 1065.65054
[28] Mehrmann, V., Xu, H.: Numerical methods in control. J. Comput. Appl. Math. 123, 371-394 (2000) · Zbl 0967.65081 · doi:10.1016/S0377-0427(00)00392-7
[29] Phillips, N.C., Viola, M.G.: A simple separable exact \[C^*C\]∗-algebra not anti-isomorphic to itself. Math. Ann. 355(2), 783-799 (2013) · Zbl 1269.46042 · doi:10.1007/s00208-011-0755-z
[30] Rickart, C.E.: General Theory of Banach Algebras, Univ. Ser. HigherMath. D. van Nostrand Co., Princeton (1960) · Zbl 0095.09702
[31] Shields, A.L.: Weighted shift operators and analytic function theory. Topics in operator theory. American Mathematical Society, Providence, RI, pp. 49-128. Mathematical Surveys, No. 13 (1974) · Zbl 1126.47010
[32] Sorensen, D.: Passivity preserving model reduction via interpolation of spectral zeros. Syst. Control Lett. 54, 347-360 (2005) · Zbl 1129.93340 · doi:10.1016/j.sysconle.2004.07.006
[33] Stacey, P.J.: Real structure in unital separable simple \[C^*C\]∗-algebras with tracial rank zero and with a unique tracial state, New York. J. Math. 12, 269-273 (2006). (electronic) · Zbl 1112.46047
[34] Stacey, P.J.: Antisymmetries of the CAR algebra. Trans. Am. Math. Soc. 363(12), 6439-6452 (2011) (With an appendix by J. L. Boersema and N. C. Phillips) · Zbl 1236.46053
[35] Voiculescu, D.: A non-commutative Weyl-von Neumann theorem. Rev. Roumaine Math. Pures Appl. 21(1), 97-113 (1976) · Zbl 0335.46039
[36] Zagorodnyuk, S.M.: On a \[J\] J-polar decomposition of a bounded operator and matrices of \[J\] J-symmetric and \[J\] J-skew-symmetric operators. Banach J. Math. Anal. 4(2), 11-36 (2010) · Zbl 1200.47050 · doi:10.15352/bjma/1297117238
[37] Zagorodnyuk, S.M.: On the complex symmetric and skew-symmetric operators with a simple spectrum. Symmetry, Integr. Geom. Methods Appl. 7, 1-9 (2011) · Zbl 1218.44002
[38] Zhu, S., Li, C.G.: Complex symmetry of a dense class of operators. Integral Equ. Oper. Theory 73(2), 255-272 (2012) · Zbl 1284.47014 · doi:10.1007/s00020-012-1957-9
[39] Zhu, S., Li, C.G.: Complex symmetric weighted shifts. Trans. Am. Math. Soc. 365(1), 511-530 (2013) · Zbl 1282.47045 · doi:10.1090/S0002-9947-2012-05642-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.