×

A Bernoulli polynomial approach with residual correction for solving mixed linear Fredholm integro-differential-difference equations. (English) Zbl 1277.65114

Summary: An approximate method based on Bernoulli polynomials and collocation points is presented to obtain the solutions of higher-order linear Fredholm integro-differential-difference equations with mixed conditions. The method we use consists of reducing the problem to a matrix equation which corresponds to a system of linear algebraic equations. The obtained matrix equation is based on the matrix forms of Bernoulli polynomials and their derivatives by means of collocations. The solutions are obtained as the truncated Bernoulli series which are defined in the interval \([a,b]\). To illustrate the method, it is applied to the initial and boundary values. Also, an error analysis and numerical examples are included to demonstrate the validity and applicability of the technique.

MSC:

65R20 Numerical methods for integral equations
45A05 Linear integral equations
45J05 Integro-ordinary differential equations
Full Text: DOI

References:

[1] DOI: 10.1007/978-1-4757-5579-4 · doi:10.1007/978-1-4757-5579-4
[2] DOI: 10.1016/j.amc.2003.11.038 · Zbl 1063.65144 · doi:10.1016/j.amc.2003.11.038
[3] DOI: 10.1017/CBO9780511569609 · Zbl 0592.65093 · doi:10.1017/CBO9780511569609
[4] DOI: 10.1063/1.4756138 · doi:10.1063/1.4756138
[5] DOI: 10.1063/1.4765510 · doi:10.1063/1.4765510
[6] DOI: 10.1016/j.amc.2007.04.097 · Zbl 1131.65109 · doi:10.1016/j.amc.2007.04.097
[7] DOI: 10.1016/j.amc.2010.03.054 · Zbl 1192.65161 · doi:10.1016/j.amc.2010.03.054
[8] DOI: 10.1080/00207160512331331156 · Zbl 1072.65164 · doi:10.1080/00207160512331331156
[9] DOI: 10.1016/j.cam.2005.02.009 · Zbl 1078.65551 · doi:10.1016/j.cam.2005.02.009
[10] DOI: 10.1016/S0307-904X(02)00099-9 · Zbl 1047.65114 · doi:10.1016/S0307-904X(02)00099-9
[11] Hosseini S.M., Korean J. Comput. Appl. Math. 9 (2) pp 497– (2002)
[12] DOI: 10.1016/j.jfranklin.2008.04.016 · Zbl 1202.65172 · doi:10.1016/j.jfranklin.2008.04.016
[13] DOI: 10.1016/S0096-3003(03)00180-2 · Zbl 1038.65147 · doi:10.1016/S0096-3003(03)00180-2
[14] DOI: 10.1080/002073900287273 · Zbl 1018.65152 · doi:10.1080/002073900287273
[15] Rashed M.T., Appl. Numer. Math. 156 pp 485– (2004)
[16] DOI: 10.1016/j.matcom.2005.02.035 · Zbl 1205.65342 · doi:10.1016/j.matcom.2005.02.035
[17] DOI: 10.1016/j.cam.2005.12.026 · Zbl 1107.65122 · doi:10.1016/j.cam.2005.12.026
[18] DOI: 10.1016/S0377-0427(99)00192-2 · Zbl 0936.65146 · doi:10.1016/S0377-0427(99)00192-2
[19] DOI: 10.1016/j.cam.2005.12.015 · Zbl 1112.34063 · doi:10.1016/j.cam.2005.12.015
[20] DOI: 10.1016/j.amc.2005.01.051 · Zbl 1084.65133 · doi:10.1016/j.amc.2005.01.051
[21] DOI: 10.1080/02781070500128354 · Zbl 1077.45006 · doi:10.1080/02781070500128354
[22] DOI: 10.1007/978-1-4612-2706-9 · doi:10.1007/978-1-4612-2706-9
[23] DOI: 10.1016/j.amc.2005.12.044 · Zbl 1102.65137 · doi:10.1016/j.amc.2005.12.044
[24] DOI: 10.1016/j.amc.2005.01.116 · Zbl 1088.65118 · doi:10.1016/j.amc.2005.01.116
[25] DOI: 10.1016/j.amc.2004.04.096 · Zbl 1069.65149 · doi:10.1016/j.amc.2004.04.096
[26] DOI: 10.1016/S0096-3003(99)00059-4 · Zbl 1023.65147 · doi:10.1016/S0096-3003(99)00059-4
[27] DOI: 10.1016/j.amc.2008.12.090 · Zbl 1162.65420 · doi:10.1016/j.amc.2008.12.090
[28] Ş. Yüzbaşı, Bessel polynomial solutions of linear diferential, integral and integro-diferential equations, M.Sc. thesis, Graduate School of Natural and Applied Sciences, Mugla University (2009)
[29] Yüzbaşı Ş., J. Adv. Res. Differ. Equ. 3 (2) pp 1– (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.