×

Finite volume simulation of viscoelastic laminar flow in a lid-driven cavity. (English) Zbl 1274.76140

Summary: A finite volume technique is presented for the numerical solution of steady laminar flow of Oldroyd-B fluid in a lid-driven square cavity over a wide range of Reynolds and Weissenberg numbers. Second order central difference scheme is used for the convection part of the momentum equation while first order upwind approximation is employed to handle viscoelastic stresses. A non-uniform collocated grid system is used. Momentum interpolation method is used to evaluate face velocity. Coupled mass and momentum conservation equations are solved through iterative SIMPLE (semi-implicit method for pressure-linked equation) algorithm. Detailed investigation of the flow field is carried out in terms of velocity and stress fields. Differences between the behavior of Newtonian and viscoelastic fluids, such as the normal stress effects and secondary eddy formations, are highlighted.

MSC:

76A10 Viscoelastic fluids
76M12 Finite volume methods applied to problems in fluid mechanics

References:

[1] Evans, R. E.; Walters, K.: Further remarks on the lip-vortex mechanism of vortex enhancement in planar-contraction flows, J. non-Newton fluid mech. 32, 95-105 (1989)
[2] Evans, R. E.; Walters, K.: Flow characteristic associated with abrupt changes in geometry in the case of highly elastic liquid, J. non-Newton fluid mech. 20, 11-29 (1986)
[3] Boger, D. V.; Hur, D. U.; Binnington, R. J.: Further observations of elastic effects in tubular entry flows, J. non-Newton fluid mech. 20, 31-49 (1986)
[4] Pak, B.; Cho, U. I.; Choı, S. U. S.: Separation and reattachment of non-Newtonian fluid flows in a sudden expansion pipe, J. non-Newton fluid mech. 37, 175-199 (1990)
[5] Zhou, Y. C.; Patnaik, B. S. V.; Wan, D. C.; Wei, G. W.: DSC solution for flow in a staggered double lid driven cavity, Int. J. Numer. meth. Eng. 57, 211-234 (2003) · Zbl 1062.76552 · doi:10.1002/nme.674
[6] Darwish, M. S.; Whiteman, J. R.: Numerical modeling of viscoelastic liquids using a finite-volume method, J. non-Newton fluid mech. 45, 311-337 (1992) · Zbl 0784.76063 · doi:10.1016/0377-0257(92)80066-7
[7] Keunings, R.: On the high weissenberg number problem, J. non-Newton fluid mech. 20, 209-226 (1986) · Zbl 0589.76021 · doi:10.1016/0377-0257(86)80022-2
[8] Fortin, M.: A new approach for the FEM simulation of viscoelastic flows, J. non-Newton fluid mech. 32, 295-310 (1989) · Zbl 0672.76010 · doi:10.1016/0377-0257(89)85012-8
[9] Davies, A. R.: Numerical filtering and the high weissenberg number problem, J. non-Newton fluid mech. 16, 195-209 (1984) · Zbl 0546.76017 · doi:10.1016/0377-0257(84)85010-7
[10] Debbaut, B.; Marchal, J. M.; Crochet, M. J.: Numerical simulation of highly viscoelastic flows through an abrupt contraction, J. non-Newton fluid mech. 29, 119-146 (1988) · Zbl 0666.76033 · doi:10.1016/0377-0257(88)85053-5
[11] Saramito, P.: Efficient simulation of nonlinear viscoelastic fluid flows, J. non-Newton fluid mech. 60, 199-223 (1995)
[12] Apelian, M. R.; Armstrong, R. C.; Brown, R. A.: Impact of the constitutive equation and singularity on the calculation of stick-slip flow: the modified upper-convected Maxwell model, J. non-Newton fluid mech. 27, 299-321 (1988) · Zbl 0668.76007 · doi:10.1016/0377-0257(88)85002-X
[13] Sasmal, G. P.: A finite volume approach for calculation of viscoelastic flow through an abrupt axisymmetric contraction, J. non-Newton fluid mech. 56, 15-47 (1995)
[14] Joseph, D. D.; Renardy, M.; Saut, J. -C.: Hyperbolicity and change of type in the flow of viscoelastic fluids, Mech. anal. 87, 213-251 (1985) · Zbl 0572.76011 · doi:10.1007/BF00250725
[15] Yoo, J. Y.; Joseph, D. D.: Hyperbolicity and change of type in the flow of viscoelastic fluids through channels, J. non-Newton fluid mech. 19, 15-41 (1985) · Zbl 0579.76009 · doi:10.1016/0377-0257(85)87010-5
[16] Gasti, T. B.: Steady flow of a non-Newtonian fluid through a contraction, J. comput. Phys. 27, 42-70 (1975) · Zbl 0378.76002 · doi:10.1016/0021-9991(78)90025-6
[17] Crochet, M. J.; Pilate, G.: Plane flow of a fluid of second grade through a contraction, J. non-Newton fluid mech. 1, 247-258 (1976) · Zbl 0339.76002 · doi:10.1016/0377-0257(76)80023-7
[18] Choi, H. C.; Song, J. H.; Yoo, J. Y.: Numerical simulation of planar contraction flow of a gieskus fluid, J. non-Newton fluid mech. 29, 347-379 (1988) · Zbl 0669.76017 · doi:10.1016/0377-0257(88)85061-4
[19] Chang, P. W.; Patten, T. W.; Finlayson, B. A.: Collocation and Galerkin finite element methods for viscoelastic fluid flow, Comput. fluids 7, 267-283 (1979) · Zbl 0422.76002 · doi:10.1016/0045-7930(79)90011-2
[20] Gaidos, R. E.; Darby, R.: Numerical simulation and change in type in the developing flow of a nonlinear viscoelastic fluid, J. non-Newton fluid mech. 29, 59-79 (1988) · Zbl 0666.76030 · doi:10.1016/0377-0257(88)85050-X
[21] Beris, A. N.; Armstrong, R. C.; Brown, R. A.: Spectral/finite element calculations of the flow of a Maxwell fluid between eccentric rotating cylinders, J. non-Newton fluid mech. 22, 129-167 (1987) · Zbl 0609.76010 · doi:10.1016/0377-0257(87)80033-2
[22] Yoo, J. Y.; Na, Y.: A numerical study of the planar contraction flow of a viscoelastic fluid using the SIMPLER algorithm, J. non-Newton fluid mech. 39, 89-106 (1991) · Zbl 0718.76076 · doi:10.1016/0377-0257(91)80005-5
[23] Xue, S. -C.; Phan-Thien, N.; Tanner, R. I.: Numerical study of secondary flows of viscoelastic fluid in straight pipes by an implicit finite volume method, J. non-Newton fluid mech. 59, 191-213 (1995)
[24] Xue, S. -C.; Phan-Thien, N.; Tanner, R. I.: Three dimensional numerical simulations of viscoelastic flows through planar contractions, J. non-Newton fluid mech. 74, 195-245 (1998) · Zbl 0957.76042 · doi:10.1016/S0377-0257(97)00072-4
[25] Oliveira, P. J.; Pinho, F. T.; Pinto, G. A.: Numerical simulation of non-linear elastic flows with a general collocated finite-volume method, J. non-Newton fluid mech. 79, 1-43 (1998) · Zbl 0960.76053 · doi:10.1016/S0377-0257(98)00082-2
[26] Huang, X.; Phan-Thien, N.; Tanner, R. I.: Viscoelastic flow between eccentric rotating cylinders: unstructured control volume method, J. non-Newton fluid mech. 64, 71-92 (1996)
[27] Tanner, R. I.; Xue, S. -C.: Computing transient flows with high elasticity, Korea-aust. Rheol. J. 14, 143-159 (2002)
[28] Moatassime, H. A.; Esselaoui, D.: A finite volume approach for unsteady viscoelastic fluid flows, Int. J. Numer. meth. Fluids 39, 939-959 (2002) · Zbl 1101.76363 · doi:10.1002/fld.353
[29] Peric, M.; Kesser, R.; Scheuerer, G.: Comparison of finite volume numerical methods with staggered and collocated grids, Comput. fluids 16, 389-403 (1988) · Zbl 0672.76018 · doi:10.1016/0045-7930(88)90024-2
[30] Date, A. W.: Solution of Navier – Stokes equations on non-staggered grid, Int. J. Heat mass transfer 36, 1913-1922 (1993) · Zbl 0771.76047 · doi:10.1016/S0017-9310(05)80179-6
[31] Rhie, C. M.; Chow, W. L.: Numerical study of the turbulent flow past an airfoil with trailing edge separation, Aiaa j. 21, No. 11, 1525-1532 (1983) · Zbl 0528.76044 · doi:10.2514/3.8284
[32] Majumdar, S.: Role of underrelaxation in momentum interpolation for calculation of flow with nonstaggered grids, Numer. heat transfer 13, 125-132 (1988)
[33] Yu, B.; Tau, W. -Q.; Wei, J. -J.; Kawaguchi, Y.; Tagawa, T.; Ozoe, H.: Discussion on momentum interpolation method for calculated grids of incompressible flow, Numer. heat transfer B 42, 141-166 (2002)
[34] Alves, M. A.; Pinho, F. T.; Oliveira, P. J.: Effect of a high-resolution differencing scheme on finite-volume prediction of viscoelastic flows, J. non-Newton fluid mech. 93, 287-314 (2000) · Zbl 0990.76049 · doi:10.1016/S0377-0257(00)00121-X
[35] Alves, M. A.; Pinho, F. T.; Oliveira, P. J.: The flow of viscoelastic fluids past a cylinder: finite volume high-resolution methods, J. non-Newton fluid mech. 97, 207-232 (2001) · Zbl 1030.76034 · doi:10.1016/S0377-0257(00)00198-1
[36] Edussuriya, S. S.; Williams, A. J.; Bailey, C.: A cell-centred finite volume method for modeling viscoelastic flow, J. non-Newton fluid mech. 117, 47-61 (2004) · Zbl 1053.76043 · doi:10.1016/j.jnnfm.2003.12.001
[37] Spalding, D. B.: A novel finite difference formulation for differential expressions involving both first and second derivatives, Int. J. Numer. methods eng. 4, 551-559 (1972)
[38] Patankar, S. V.: Numerical heat transfer and fluid flow, (1980) · Zbl 0521.76003
[39] Raithby, G. D.: Skew upwind differencing schemes for problems involving fluid flow, Comput. methods appl. Mech. eng. 19, 153-164 (1976) · Zbl 0347.76066 · doi:10.1016/0045-7825(76)90058-X
[40] Shyy, W.; Thakur, S.; Wright, J.: Second order upwind and central difference schemes for recirculating flow computation, Aiaa j. 30, 923-932 (1999) · Zbl 0756.76053 · doi:10.2514/3.11010
[41] Leonard, B. P.: A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput. methods appl. Mech. eng. 19, 59-98 (1979) · Zbl 0423.76070 · doi:10.1016/0045-7825(79)90034-3
[42] Gaskell, P. H.; Lau, A. K. C.: Curvature-compensated convective transport: SMART, a new boundedness-preserving transport algorithm, Int. J. Numer. methods fluids 8, 617-641 (1988) · Zbl 0668.76118 · doi:10.1002/fld.1650080602
[43] Cochrane, T.; Walters, K.; Webster, M. F.: On Newtonian and non-Newtonian flow in complex geometries, Phil. trans. R. soc. Lond. A 301, No. 163, 163-181 (1981)
[44] Mendelson, M. A.; Yeh, P. -W.; Brown, R. A.; Armstrong, R. C.: Approximation error in finite element calculations of viscoelastic fluid flows, J. non-Newton fluid mech. 10, 31-54 (1982) · Zbl 0481.76003 · doi:10.1016/0377-0257(82)85003-9
[45] Pakdel, P.; Spiegelberg, S. H.; Mckinley, G. H.: Cavity flows of elastic liquids: two-dimensional flows, Phys. fluids 9, No. 11, 3123-3140 (1997)
[46] Pakdel, P.; Mckinley, G. H.: Cavity flows of elastic liquids: purely elastic instabilities, Phys. fluids 10, 1058-1070 (1998)
[47] Grillet, A. M.; Yang, B.; Khomami, B.; Shaqfeh, E. S. G.: Modelling of viscoelastic lid driven cavity flow using finite element simulations, J. non-Newton fluid mech. 88, 99-131 (1999) · Zbl 1073.76584 · doi:10.1016/S0377-0257(99)00015-4
[48] Grillet, A. M.; Shaqfeh, E. S. G.; Khomami, B.: Observations of elastic instabilities in lid-driven cavity flow, J. non-Newton fluid mech. 94, 15-35 (2000)
[49] Fattal, R.; Kupferman, R.: Time dependent simulation of viscoelastic flows at high weissenberg number using the log-conformation representation, J. non-Newton fluid mech. 126, 23-37 (2005) · Zbl 1099.76044 · doi:10.1016/j.jnnfm.2004.12.003
[50] Oliveira, P. J.: Viscoelastic lid-driven cavity flows, , 1-16 (2007)
[51] Bird, R. B.; Armstrong, R. C.; Hassager, O.: Dynamics of polymeric liquids, Dynamics of polymeric liquids 1, Fluid Mechanics (1987)
[52] Na, Y.; Yoo, J. Y.: A finite volume technique to simulate the flow of a viscoelastic fluid, Comput. mech. 8, 43-55 (1991) · Zbl 0734.76051 · doi:10.1007/BF00370547
[53] Versteeg, H. K.; Malalasekera, W.: An introduction to computational fluid dynamics: the finite volume method, (1995)
[54] Patankar, S. V.; Spalding, D. B.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat mass transfer 15, 1787-1806 (1972) · Zbl 0246.76080 · doi:10.1016/0017-9310(72)90054-3
[55] Van Doormal, J. P.; Raithby, G. D.: Enhancement of the SIMPLE method for predicting incompressible flows, Numer. heat transfer 7, 147-163 (1984) · Zbl 0553.76005 · doi:10.1080/01495728408961817
[56] Issa, R. I.: Solution of implicitly discretized fluid flow equation by operator — splitting, J. comput. Phys. 62, 40-65 (1986) · Zbl 0619.76024 · doi:10.1016/0021-9991(86)90099-9
[57] Tomé, M. F.; Mangiavacchi, N.; Cuminato, J. A.; Castelo, A.; Mckee, S.: Afinite difference technique for simulating unsteady viscoelastic free surface flows, J. non-Newton fluid mech. 106, 61-106 (2002) · Zbl 1015.76060 · doi:10.1016/S0377-0257(02)00064-2
[58] Deng, Q. -H.; Tang, G. -F.: Special treatment of pressure correction based on continuity conservation in a pressure based algorithm, Numer. heat transfer B 42, 73-92 (2002)
[59] Sahin, M.; Ovens, R. G.: A novel fully implicit finite volume method applied to the lid-driven cavity problem. Part I. High Reynolds number flow calculations, Int. J. Numer. fluids 42, 57-77 (2003) · Zbl 1078.76046 · doi:10.1002/fld.442
[60] Ghia, U.; Ghia, K. N.; Shin, C. T.: High-re solutions for incompressible flow using the Navier – Stokes equations and a multigrid method, J. comput. Phys. 48, 387-411 (1982) · Zbl 0511.76031 · doi:10.1016/0021-9991(82)90058-4
[61] Botella, O.; Peyret, R.: Benchmark spectral results on the lid-driven cavity flow, Comput. fluids 27, No. 4, 421-433 (1998) · Zbl 0964.76066 · doi:10.1016/S0045-7930(98)00002-4
[62] Bruneau, C. -H.; Jouron, C.: An efficient scheme for solving steady incompressible Navier – Stokes equations, J. comput. Phys. 89, No. 2, 389-413 (1990) · Zbl 0699.76034 · doi:10.1016/0021-9991(90)90149-U
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.