×

Collocation and Galerkin finite element methods for viscoelastic fluid flow. I. Description of method and problems with fixed geometry. (English) Zbl 0422.76002


MSC:

76A10 Viscoelastic fluids
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Wheeler, J. A.; Schiltz, R. L.; Wissler, E. H., Non-Newtonian flow through a rectangular duct. Computational methods in nonlinear mechanics, (Oden, J. T., Texas Inst. Comp. Mech. (1974)) · Zbl 0309.76001
[2] Crochet, M. J.; Pilate, G., Numerical study of the flow of a fluid of second grade in a square cavity, Comp. Fluids, 3, 283-291 (1975) · Zbl 0326.76001
[3] Sagendorph, F. E., A numerical solution method for two-dimensional non-viscometric fluids of fluids exhibiting fading memory, (PhD. dissertation (1971), Engng Mech. Dept., Univ. of Kentucky: Engng Mech. Dept., Univ. of Kentucky Lexington, Kentucky)
[4] Mizushina, T.; Usui, H., Transport phenomena of viscoelastic fluid in cross flow around a circular cylinder, J. Chem. Eng. Japan, 8, 393-398 (1975)
[5] Gatshi, T. B.; Lumley, J. L., Steady flow of a Non-Newtonian fluid through a contraction, J. Comp. Phys., 27, 42-70 (1978) · Zbl 0378.76002
[6] Crochet, M. J.; Pilate, G., Plane flow of a fluid of second grade through a contraction, J. Non-Newtonian Fluid Mech., 1, 247-258 (1976) · Zbl 0339.76002
[7] Kawahara, M.; Takeuchi, N., Mixed finite element method for analysis of viscoelastic fluid flow, Comp. Fluids, 5, 33-45 (1977) · Zbl 0354.76002
[8] Perera, M. G.N.; Walters, K., Long-range memory effects in flows involving abrupt changes in geometry, Part I: Flows associated with \(L- shaped\) and \(T- shaped\) geometries, J. Non-Newtonian Fluid Mech., 2, 49-81 (1977) · Zbl 0351.76004
[9] Reddy, K. R.; Tanner, R. I., Finite element approach to Die-Swell problem of Non-Newtonian fluids, (6th Australasian hydraulics and fluid mech. conf.. 6th Australasian hydraulics and fluid mech. conf., Adelaide, Australia (5-9 Dec. 1977)), 431-434
[10] Horsfall, F., A theoretical treatment of die swell in a Newtonian liquid, Polymer, 14, 262-266 (1973)
[11] Nickell, R. E.; Tanner, R. I.; Caswell, B., The solution of viscous incompressible jet and free surface flows using finite element methods, J. Fluid Mech., 65, 189-206 (1974) · Zbl 0298.76022
[12] Tanner, R. I.; Nickell, R. E.; Bilger, R. W., Finite element methods for the solution of some incompressible Non-Newtonian fluid mechanics problems with free surfaces, Comp. Meth. in Appl. Math. Eng., 6, 155-174 (1975) · Zbl 0314.76001
[13] Allan, W., Newtonian die swell evaluation for axisymmetric tube exits using a finite element method, Int. J. Num. Meth. Eng., 11, 1621-1626 (1977) · Zbl 0364.76028
[14] Caswell, B.; Tanner, R. I., Wirecoating die design using finite element methods, private communication (1978)
[15] Silliman, W. J.; Scriven, L. E., Slip of liquid inside a channel exit, private communication (1977)
[16] Prenter, P. M.; Russell, R. D., Orthogonal collocation for elliptic partial differential equations, SIAM J. Numer. Anal., 13, 923-939 (1976) · Zbl 0366.65052
[17] Houstis, E. N.; Lynch, R. E.; Rice, J. R.; Papatheodorou, T. S., Evaluation of numerical methods for elliptic partial differential equations, J. Comp. Phys., 27, 323-350 (1978) · Zbl 0381.65059
[18] Chang, P. W.; Finlayson, B. A., Orthogonal collocation for finite elements for elliptic equations, (Vichnevetsky, R., Adv. Comp. Methods for PDE-II (1977), IMACS: IMACS Lehigh) · Zbl 0378.65063
[19] Chang, P. W.; Finlayson, B. A., Orthogonal collocation on finite elements for elliptic equations, Math. Comp. Simulation, 20, 83-92 (1978) · Zbl 0378.65063
[20] Bird, R. B.; Hassager, O.; Armstrong, R. C., Dynamics of Polymeric Liquids, (Fluid Mechanics: Fluid Mechanics, Volume I (1977), Wiley: Wiley New York)
[21] Bird, R. B.; Hassager, O.; Abdel-Khalik, S. I., Co-rotational rheological models and the Goddard expansion, AIChE J., 20, 1041-1066 (1974)
[22] Brocklebank, M. P.; Smith, J. M., Laminar velocity profile development in straight pipes of circular cross section, Rheol. Acta., 7, 286-289 (1968)
[23] Finlayson, B. A., The Method of Weighted Residuals and Variational Principles (1972), Academic Press · Zbl 0319.49020
[24] Olson, M. D.; Tuann, S. Y., Primitive variables versus stream function finite element solution of the Navier-Stokes equation, (Preprints of 2nd International Symp. on Finite Elemental Methods in Flow Problems. Preprints of 2nd International Symp. on Finite Elemental Methods in Flow Problems, San Margherita Ligure, Italy (14-18 June 1976)), 57-68 · Zbl 0442.76031
[25] Taylor, C.; Hood, P., A numerical solution of the Navier-Stokes equations using the finite element technique, Comp. Fluids, 1, 73-100 (1973) · Zbl 0328.76020
[26] Huyakorn, P. S.; Taylor, C.; Lee, R. L.; Gresho, P. M., A comparison of various mixed-interpolation finite elements in the velocity-pressure formulation of the Navier-Stokes equations, Comp. Fluids, 6, 25-35 (1978) · Zbl 0381.76024
[27] Hood, P., Frontal solution program for unsymmetric matrices, Int. J. Num. Methods Eng. 10, 379-399 (1976) · Zbl 0322.65013
[28] Pinder, G. F.; Frind, E. O.; Celia, M. A., (Brebbia, C. A.; Gray, W. G.; Pinder, G. F., Groundwater flow simulation using collocation finite elements, finite elements in water resources (1978), Pentech Press: Pentech Press London), 1.171-1.185 · Zbl 0389.76001
[29] Atkinson, B.; Brocklebank, M. P.; Card, C. C.H.; Smith, J. M., Low Reynolds Number developing flows, AIChE. J., 15, 548-553 (1969)
[30] Richardson, S., A “Stick-Slip” problem related to the motion of a free jet at low Reynolds Number, (Proc. Comb. Phil. Soc., 67 (1970)), 477-489 · Zbl 0198.30202
[31] Richardson, R., The Die-Swell phenomenon, Rheol. Acta., 9, 193-199 (1970)
[32] Michael, D. H., The separation of a viscous liquid at a straight edge, Mathematika, 5, 82-84 (1958) · Zbl 0088.42101
[33] Huilgol, R. R.; Tanner, R. I., The separation of a second-order fluid at a straight edge, J. Non-Newtonian Fluid Mech., 2, 89-96 (1977) · Zbl 0347.76004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.