×

On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry properties. (English) Zbl 1273.74007

Summary: This work is concerned with the characterization of the statistical dependence between the components of random elasticity tensors that exhibit some given material symmetries. Such an issue has historically been addressed with no particular reliance on probabilistic reasoning, ending up in almost all cases with independent (or even some deterministic) variables. Therefore, we propose a contribution to the field by having recourse to the Information Theory. Specifically, we first introduce a probabilistic methodology that allows for such a dependence to be rigorously characterized and which relies on the Maximum Entropy (MaxEnt) principle. We then discuss the induced dependence for the highest levels of elastic symmetries, ranging from isotropy to orthotropy. It is shown for instance that for the isotropic class, the bulk and shear moduli turn out to be independent Gamma-distributed random variables, whereas the associated stochastic Young modulus and Poisson ratio are statistically dependent random variables.

MSC:

74A40 Random materials and composite materials
74B05 Classical linear elasticity
15B52 Random matrices (algebraic aspects)
60B20 Random matrices (probabilistic aspects)

References:

[1] Balian, R.: Random matrices and information theory. Nuovo Cimento B 57(1), 183–193 (1968) · Zbl 0209.21903 · doi:10.1007/BF02710326
[2] Chadwick, P., Vianello, M., Cowin, S.: A new proof that the number of linear elastic symmetries is eight. J. Mech. Phys. Solids 49, 2471–2492 (2001) · Zbl 1017.74009 · doi:10.1016/S0022-5096(01)00064-3
[3] Fedorov, F.I.: Theory of Elastic Waves in Crystals. Plenum Press, New York (1968)
[4] Guilleminot, J., Noshadravan, A., Soize, C., Ghanem, R.G.: A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures. Comput. Methods Appl. Mech. Eng. 200, 1637–1648 (2011) · Zbl 1228.74019 · doi:10.1016/j.cma.2011.01.016
[5] Guilleminot, J., Soize, C.: Non-Gaussian positive-definite matrix-valued random fields with constrained eigenvalues: application to random elasticity tensors with uncertain material symmetries. Int. J. Numer. Methods Eng. 88(11), 1128–1151 (2011) · Zbl 1242.74229 · doi:10.1002/nme.3212
[6] Guilleminot, J., Soize, C.: Generalized stochastic approach for constitutive equation in linear elasticity: a random matrix model. Int. J. Numer. Methods Eng. 90(5), 613–635 (2011) · Zbl 1242.74230 · doi:10.1002/nme.3338
[7] Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957) · Zbl 0084.43701 · doi:10.1103/PhysRev.106.620
[8] Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 108(2), 171–190 (1957) · Zbl 0084.43701 · doi:10.1103/PhysRev.108.171
[9] Jaynes, E.T.: The Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003) · Zbl 1045.62001
[10] Jumarie, G.: Maximum Entropy, Information Without Probability and Complex Fractal. Kluwer Academic, Dordrecht (2000) · Zbl 0982.94001
[11] Kapur, J.N., Kesavan, H.K.: Entropy Optimization Principles with Applications. Academic Press, San Diego (1992) · Zbl 0718.62007
[12] Kunin, I.A.: An algebra of tensor operators and its applications to elasticity. Int. J. Eng. Sci. 19, 1551–1561 (1981) · Zbl 0479.15023 · doi:10.1016/0020-7225(81)90078-1
[13] Luenberger, D.G.: Optimization by Vector Space Methods. John Wiley and Sons, New York (2009) · Zbl 0176.12701
[14] Mehrabadi, M., Cowin, S.: Eigentensors of linear anisotropic elastic materials. Q. J. Mech. Appl. Math. 43(1), 15–41 (1990) · Zbl 0698.73002 · doi:10.1093/qjmam/43.1.15
[15] Mehta, M.L.: Random Matrices, 3rd edn. Academic Press, New York (2004) · Zbl 1107.15019
[16] Moakher, M., Norris, A.N.: The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower symmetry. J. Elast. 85, 215–263 (2006) · Zbl 1104.74014 · doi:10.1007/s10659-006-9082-0
[17] Ostoja-Starzewski, M.: Microstructural Randomness and Scaling in Mechanics of Materials. Chapman & Hall–CRC, London–Boca Raton (2008) · Zbl 1148.74002
[18] Papoulis, A., Unnikrishna Pillai, S.: Probability, Random Variables and Stochastic Processes, 4th edn. McGraw-Hill, Singapore (2002)
[19] Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, Berlin (2010)
[20] Schwartz, L.: Analyse II Calcul Différentiel et Equations Différentielles. Hermann, Paris (1997)
[21] Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948) · Zbl 1154.94303 · doi:10.1002/j.1538-7305.1948.tb01338.x
[22] Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–659 (1948) · Zbl 1154.94303 · doi:10.1002/j.1538-7305.1948.tb00917.x
[23] Sobczyk, K., Trebicki, J.: Maximum entropy principle in stochastic dynamics. Probab. Eng. Mech. 5(3), 102–110 (1990) · doi:10.1016/0266-8920(90)90001-Z
[24] Soize, C.: A nonparametric model of random uncertainties on reduced matrix model in structural dynamics. Probab. Eng. Mech. 15(3), 277–294 (2000) · doi:10.1016/S0266-8920(99)00028-4
[25] Soize, C.: Maximum entropy approach for modeling random uncertainties in transient elastodynamics. J. Acoust. Soc. Am. 109(5), 1979–1996 (2001) · doi:10.1121/1.1360716
[26] Soize, C.: Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators. Comput. Methods Appl. Mech. Eng. 195, 26–64 (2006) · Zbl 1093.74065 · doi:10.1016/j.cma.2004.12.014
[27] Soize, C.: Construction of probability distributions in high dimension using the maximum entropy principle: applications to stochastic processes, random fields and random matrices. Int. J. Numer. Methods Eng. 76, 1583–1611 (2008) · Zbl 1195.74311 · doi:10.1002/nme.2385
[28] Soize, C.: Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size. Probab. Eng. Mech. 23, 307–323 (2008) · doi:10.1016/j.probengmech.2007.12.019
[29] Walpole, L.: Fourth-rank tensors of the thirty-two crystal classes. Multiplication Tables 391, 149–179 (1984) · Zbl 0521.73005
[30] Walpole, L.J.: Elastic behavior of composite materials: theoretical foundations. Adv. Appl. Mech. 21, 169–242 (1981) · Zbl 0512.73056 · doi:10.1016/S0065-2156(08)70332-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.