×

A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures. (English) Zbl 1228.74019

Summary: In this paper, we address the construction of a prior stochastic model for non-Gaussian deterministically-bounded positive-definite matrix-valued random fields in the context of mesoscale modeling of heterogeneous elastic microstructures. We first introduce the micromechanical framework and recall, in particular, Huet’s Partition Theorem. Based on the latter, we discuss the nature of hierarchical bounds and define, under some given assumptions, deterministic bounds for the apparent elasticity tensor. Having recourse to the Maximum Entropy Principle under the constraints defined by the available information, we then introduce two random matrix models. It is shown that an alternative formulation of the boundedness constraints further allows constructing a probabilistic model for deterministically-bounded positive-definite matrix-valued random fields. Such a construction is presented and relies on a class of random fields previously defined. We finally exemplify the overall methodology considering an experimental database obtained from EBSD measurements and provide a simple numerical application.

MSC:

74E15 Crystalline structure
74E35 Random structure in solid mechanics
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
74M25 Micromechanics of solids

Software:

YALMIP

References:

[1] Anderson, T. W., Introduction to Multivariate Statistical Analysis (1958), Wiley: Wiley New York · Zbl 0083.14601
[2] Das, S.; Ghanem, R., A bounded random matrix approach for stochastic upscaling, Multiscale Model. Simul., 8, 1, 296-325 (2009) · Zbl 1423.74967
[3] Dattorro, J., Convex Optimization & Euclidean Distance Geometry (2005), Meboo Publishing USA: Meboo Publishing USA Palo Alto, CA
[4] Du, X.; Ostoja-Starzewski, M., On the size of representative volume element for Darcy law in random media, Proc. Roy. Soc. A, 462, 2949-2963 (2006) · Zbl 1149.76669
[5] Ghanem, R.; Spanos, P., Stochastic Finite Elements: A Spectral Approach (1991), Springer: Springer New York · Zbl 0722.73080
[6] Guilleminot, J.; Soize, C., A stochastic model for elasticity tensors with uncertain material symmetries, Int. J. Solids Struct., 47, 22-23, 3121-3131 (2010) · Zbl 1203.74016
[7] Gupta, A. K.; Nagar, D. K., Matrix Variate Distributions (2000), Chapman and Hall-CRC · Zbl 0935.62064
[8] Hazanov, S.; Huet, C., Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume, J. Mech. Phys. Solids, 42, 12, 1995-2011 (1994) · Zbl 0821.73005
[9] Hill, R., Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids, 11, 357-372 (1963) · Zbl 0114.15804
[10] Huet, C., Application of variational concepts to size effects in elastic heterogeneous bodies, J. Mech. Phys. Solids, 38, 6, 813-841 (1990)
[11] Iman, R. L.; Conover, W., A distribution-free approach to inducing rank correlation among input variables, Commun. Stat. - Simul. Comput., 11, 311-334 (1982) · Zbl 0496.65071
[12] Jardak, M.; Ghanem, R. G., Spectral stochastic homogenization of divergence-type pdes, Comput. Methods Appl. Mech. Engrg., 193, 6-8, 429-447 (2004) · Zbl 1044.65005
[13] Jaynes, E. T., Information theory and statistical mechanics, Phys. Rev., 106, 4, 620-630 (1957) · Zbl 0084.43701
[14] Jaynes, E. T., Information theory and statistical mechanics, Phys. Rev., 108, 2, 171-190 (1957) · Zbl 0084.43701
[15] J. Löfberg, Yalmip: a toolbox for modeling and optimization in MATLAB, in: Proceedings of the IEEE Conference on Computer Aided Control Systems Design (CACSD), Taipei, Taiwan, 2004.; J. Löfberg, Yalmip: a toolbox for modeling and optimization in MATLAB, in: Proceedings of the IEEE Conference on Computer Aided Control Systems Design (CACSD), Taipei, Taiwan, 2004.
[16] Mura, T., Micromechanics of Defects in Solids (1987), M. Nijhoff Publ.: M. Nijhoff Publ. The Hague, The Netherlands
[17] Nagar, D. K.; Gupta, A. K., Matrix-variate Kummer-beta distribution, J. Aust. Math. Soc., 73, 11-25 (2002) · Zbl 0999.62038
[18] Neal, R. M., Slice sampling, Ann. Stat, 31, 3, 705-767 (2003) · Zbl 1051.65007
[19] Nemat-Nasser, S.; Hori, M., Micromechanics: Overall Properties of Heterogeneous Materials (1993), North-Holland · Zbl 0924.73006
[20] Okabe, A., Spatial Tessellations: Concepts and Applications of Voronoi Diagram, Wiley Series in Probability and Statistics (2000), Wiley · Zbl 0946.68144
[21] Ostoja-Starzewski, M., Microstructural Randomness and Scaling in Mechanics of Materials (2008), Chapman and Hall-CRC · Zbl 1148.74002
[22] M. Parra Garcia, C. Luo, A. Noshadravan, A. Keck, R. Teale, A. Chattopadhyay, P. Peralta, Microstructure representation and material characterization for multiscale finite element simulations of local mechanical behavior in damaged metallic structures, in: Proceedings of SPIE, The International Society for Optical Engineering, San Diego, California, USA, 10-12 March 2008.; M. Parra Garcia, C. Luo, A. Noshadravan, A. Keck, R. Teale, A. Chattopadhyay, P. Peralta, Microstructure representation and material characterization for multiscale finite element simulations of local mechanical behavior in damaged metallic structures, in: Proceedings of SPIE, The International Society for Optical Engineering, San Diego, California, USA, 10-12 March 2008.
[23] Ranganathan, S. I.; Ostoja-Starzewski, M., Scaling function, anisotropy and the size of rve in elastic random polycrystals, J. Mech. Phys. Solids, 56, 2773-2791 (2008) · Zbl 1171.74410
[24] Sab, K., On the homogenization and the simulation of random materials, Eur. J. Mech. A/Solids, 11, 5, 585-607 (1992) · Zbl 0766.73008
[25] Sankaran, S.; Zabaras, N., A maximum entropy approach for property prediction of random microstructures, Acta Mater., 54, 2265-2276 (2006) · Zbl 1189.76128
[26] Scheike, T. H., Anisotropic growth of Voronoi cells, Adv. Appl. Probab., 26, 1, 43-53 (1994) · Zbl 0792.60011
[27] Schwartz, A. J., Electron Backscatter Diffraction in Materials Science (2000), Kluwer Academic
[28] Serfling, R. J., Approximation Theorems of Mathematical Statistics (1980), John Wiley & Sons · Zbl 0423.60030
[29] Shannon, C. E., A mathematical theory of communication, Bell System Tech. J., 27, 379-423 (1948), 623-659 · Zbl 1154.94303
[30] Shinozuka, M., Simulations of multivariate and multidimensional random processes, J. Acoust. Soc. Am., 39, 1, 357-367 (1971)
[31] Soize, C., A nonparametric model of random uncertainties on reduced matrix model in structural dynamics, Probabilist. Engrg. Mech., 15, 3, 277-294 (2000)
[32] Soize, C., Maximum entropy approach for modeling random uncertainties in transient elastodynamics, J. Acoust. Soc. Am., 109, 5, 1979-1996 (2001)
[33] Soize, C., Non-gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators, Comput. Methods Appl. Mech. Engrg., 195, 26-64 (2006) · Zbl 1093.74065
[34] Soize, C., Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size, Probabilist. Engrg. Mech., 23, 307-323 (2008)
[35] Soize, C., Generalized probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions, Int. J. Numer. Methods Engrg., 81, 8, 939-970 (2010) · Zbl 1183.74381
[36] Ta, Q. A.; Clouteau, D.; Cottereau, R., Modeling of random anisotropic elastic media and impact on wave propagation, Eur. J. Comput. Mech., 19, 1-2-3, 241-253 (2010) · Zbl 1426.74170
[37] Tootkaboni, M.; Graham-Brady, L., A multi-scale spectral stochastic method for homogenization of multi-phase periodic composites with random material properties, Int. J. Numer. Methods Engrg., 83, 59-90 (2010) · Zbl 1193.74166
[38] Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties (2002), Springer: Springer New York · Zbl 0988.74001
[39] Vandenberghe, L.; Boyd, S., Semidefinite programming, SIAM Rev., 38, 1, 49-95 (1996) · Zbl 0845.65023
[40] Zener, C., Elasticity and Anelasticity of Metals (1948), University of Chicago Press: University of Chicago Press Chicago · Zbl 0032.22202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.