×

Kato smoothing effect for Schrödinger operator. (English) Zbl 1273.35233

Cicognani, Massimo (ed.) et al., Studies in phase space analysis with applications to PDEs. In part selected papers based on the presentations at a meeting, Bertinoro, Italy, September 2011. New York, NY: Birkhäuser/Springer (ISBN 978-1-4614-6347-4/hbk; 978-1-4614-6348-1/ebook). Progress in Nonlinear Differential Equations and Their Applications 84, 355-369 (2013).
Summary: In this paper we give a survey of results on smoothing effect for Schrödinger operators. Several phenomena can be called smoothing effect. Here we limit us on the Kato or one half smoothing effect. We shall give the new and old results in different contexts, global in time and local in time in all spaces, in exterior domain. In this last case we shall give the recent result where the geometrical control condition is not satisfied and replaced by a damping condition. This kind of assumption originates in the control theory. We shall give also some references on the other smoothing effect, Strichartz estimate and related problem for wave equation, and KdV equation without exhaustiveness.
For the entire collection see [Zbl 1263.35003].

MSC:

35Q41 Time-dependent Schrödinger equations and Dirac equations
35B65 Smoothness and regularity of solutions to PDEs
Full Text: DOI

References:

[1] Aloui, L., Smoothing effect for regularized Schrödinger equation on compact manifolds, Collect. Math., 59, 53-62 (2008) · Zbl 1186.35037 · doi:10.1007/BF03191181
[2] Aloui, L., Smoothing effect for regularized Schrödinger equation on bounded domains, Asympt. Anal., 59, 179-193 (2008) · Zbl 1173.35392
[3] Aloui, L.; Khenissi, M., Stabilisation de l’équation des ondes dans un domaine extérieur, Rev. Math. Iberoamericana, 28, 1-16 (2002) · Zbl 1016.35044 · doi:10.4171/RMI/309
[4] Aloui, L.; Khenissi, M., Stabilization of Schrödinger equation in exterior domains, Contr. Optim. Calculus Variat. ESAIM, 13, 570-579 (2007) · Zbl 1142.35081 · doi:10.1051/cocv:2007024
[5] Aloui, L.; Khenissi, M., Boundary stabilization of the wave and Schrödinger equations in exterior domains, Discrete Contin. Dyn. Syst. Ser. A, 27, 919-934 (2010) · Zbl 1194.35051 · doi:10.3934/dcds.2010.27.919
[6] Aloui, L.; Khenissi, M.; Vodev, G., Smoothing effect for the regularized Schrödinger equation with non controlled orbits, Comm. Partial Diff. Eq., 38, 265-275 (2013) · Zbl 1263.35058 · doi:10.1080/03605302.2012.721852
[7] Aloui, L., Khenissi, M., Robbiano, L.: The Kato smoothing effect for regularized Schrödinger equations in exterior domains. Submitted · Zbl 1377.35044
[8] Atallah-Baraket, A.; Mechergui, C., Analytic smoothing effect for the Schrödinger equation relative to the harmonic oscillator equation, Asymp. Anal., 63, 29-48 (2009) · Zbl 1232.35139
[9] Bardos, C.; Lebeau, G.; Rauch, J., Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Contr. Optim., 30, 1024-1065 (1992) · Zbl 0786.93009 · doi:10.1137/0330055
[10] Ben-Artzi, M.; Devinatz, A., Local smoothing and convergence properties of Schrödinger type equations, J. Funct. Anal., 101, 231-254 (1991) · Zbl 0762.35022 · doi:10.1016/0022-1236(91)90157-Z
[11] Ben-Artzi, M.; Klainerman, S., Decay and regularity for the Schrödinger equation, J. Anal. Math., 58, 25-37 (1992) · Zbl 0802.35057 · doi:10.1007/BF02790356
[12] Bouclet, J-M; Tzvetkov, N., Strichartz estimates for long range perturbations, Am. J. Math., 129, 1565-1609 (2007) · Zbl 1154.35077 · doi:10.1353/ajm.2007.0039
[13] Burq, N., In: Mesures semi-classiques et mesures de défaut. Séminaire Bourbaki, vol. 1996/97, Astérisque, 245, 167-195 (1997) · Zbl 0954.35102
[14] Burq, N., Semi-classical estimates for the resolvent in nontrapping geometries, Int. Math. Res. Not., 5, 221-241 (2002) · Zbl 1161.81368 · doi:10.1155/S1073792802103059
[15] Burq, N.: Estimations de Strichartz pour des perturbations longue porte de l’oprateur de Schrdinger. Sminaire quations aux Drives Partielles, 2001-2002, expos n^011, cole Polytechnique · Zbl 1292.35188
[16] Burq, N., Smoothing effect for Schrödinger boundary value problems, Duke Math. J., 123, 403-427 (2004) · Zbl 1061.35024 · doi:10.1215/S0012-7094-04-12326-7
[17] Burq, N.; Gérard, P., Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Acad. Sci. Paris Sér. I Math., 325, 749-752 (1997) · Zbl 0906.93008 · doi:10.1016/S0764-4442(97)80053-5
[18] Burq, N.; Gérard, P.; Tzvetkov, N., On nonlinear Schrödinger equations in exterior domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21, 295-318 (2004) · Zbl 1061.35126
[19] Constantin, P.; Saut, J.-C., Local smoothing properties of dispersive equations, J. Am. Math. Soc., 1, 413-439 (1988) · Zbl 0667.35061 · doi:10.1090/S0894-0347-1988-0928265-0
[20] Constantin, P.; Saut, J.-C., Local smoothing properties of Schrödinger equations, Indiana Univ. Math. J., 38, 791-810 (1989) · Zbl 0712.35022 · doi:10.1512/iumj.1989.38.38037
[21] Craig, W.; Kappeler, T.; Strauss, W., Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pure Appl. Math., 48, 769-860 (1995) · Zbl 0856.35106 · doi:10.1002/cpa.3160480802
[22] Davies, E.B.: In: Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics, vol. 42. Cambridge University Press, Cambridge (1995) · Zbl 0893.47004
[23] De Bouard, A.; Hayashi, N.; Kato, K., Gevrey regularizing effect for the (generalized) Korteweg-de Vries equation and nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12, 673-725 (1995) · Zbl 0843.35098
[24] Dehman, B.; Gérard, P.; Lebeau, G., Stabilization and control for the nonlinear Schrödinger equation on a compact surface, Math. Z., 254, 729-749 (2006) · Zbl 1127.93015 · doi:10.1007/s00209-006-0005-3
[25] Doi, S., Smoothing effects for Schrödinger evolution group on Riemannian manifolds, Duke Math. J., 82, 679-706 (1996) · Zbl 0870.58101 · doi:10.1215/S0012-7094-96-08228-9
[26] Doi, S., Smoothing effects for Schrödinger evolution equation and global behavior of geodesic flow, Math. Ann., 318, 355-389 (2000) · Zbl 0969.35029 · doi:10.1007/s002080000128
[27] Doi, S., Smoothing of solutions for Schrödinger equations with unbounded potentials, Publ. Res. Inst. Math. Sci., 41, 175-221 (2005) · Zbl 1082.35054 · doi:10.2977/prims/1145475408
[28] Gérard, P.; Leichtnam, E., Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J., 71, 559-607 (1993) · Zbl 0788.35103 · doi:10.1215/S0012-7094-93-07122-0
[29] Ginibre, J.; Velo, G., Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144, 163-188 (1992) · Zbl 0762.35008 · doi:10.1007/BF02099195
[30] Hayashi, N.; Saitoh, S., Analyticity and smoothing effect for the Schrödinger equation, Ann. Inst. H. Poincaré Phys. Théor., 52, 163-173 (1990) · Zbl 0731.35047
[31] Helffer, B., Sjöstrand, J.: Équation de Schrödinger avec champ magnétique et équation de Harper. In: Schrödinger Operators (Sønderborg (1988)). Lecture Notes in Physics, vol. 345, pp. 118-197. Springer, Berlin (1989) · Zbl 0714.34130
[32] Hörmander, L., The Analysis of Linear Partial Differential Operators (1994), Berlin: Springer, Berlin · Zbl 1115.35005
[33] Ito, K., Propagation of singularities for Schrödinger equations on the Euclidean space with a scattering metric, Comm. Part. Differ. Equat., 31, 1735-1777 (2006) · Zbl 1117.35005 · doi:10.1080/03605300500455917
[34] Journé, J.-L.; Soffer, A.; Sogge, CD, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44, 573-604 (1991) · Zbl 0743.35008 · doi:10.1002/cpa.3160440504
[35] Kapitanski, L.; Safarov, Y., Dispersive smoothing for Schrödinger equations, Math. Res. Lett., 3, 77-91 (1996) · Zbl 0860.35016
[36] Kajitani, K.; Taglialatela, G., Microlocal smoothing effect for Schrödinger equations in Gevrey spaces, J. Math. Soc. Jpn., 55, 855-896 (2003) · Zbl 1053.35032 · doi:10.2969/jmsj/1191418753
[37] Kamoun, I.; Mechergui, C., Generalization of the analytic wavefront set and application, Indiana Univ. Math. J., 56, 2569-2600 (2007) · Zbl 1142.35110 · doi:10.1512/iumj.2007.56.2957
[38] Kato, T.; Guillemin, V., On the Cauchy problem for the (generalized) KdV equation, Studies in Applied Mathematics. Adv. Math. Suppl. Stud, 93-128 (1983), New York: Academic, New York · Zbl 0549.34001
[39] Kato, K.; Taniguchi, K., Gevrey regularizing effect for nonlinear Schrödinger equations, Osaka J. Math., 33, 863-880 (1996) · Zbl 0876.35109
[40] Kato, T.; Yajima, K., Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys., 1, 481-496 (1989) · Zbl 0833.47005 · doi:10.1142/S0129055X89000171
[41] Keel, M.; Tao, T., Endpoint Strichartz estimates. Am. J. Math., 120, 955-980 (1998) · Zbl 0922.35028 · doi:10.1353/ajm.1998.0039
[42] Koch, H.; Saut, J.-C., Local smoothing and local solvability for third order dispersive equations, SIAM J. Math. Anal., 38, 1528-1541 (2006) · Zbl 1125.35075
[43] Lax, P.; Phillips, R., Scattering Theory (1989), Boston: Academic, Boston · Zbl 0697.35004
[44] Lebeau, G., Contrôle de l’équation de Schrödinger, J. Math. Pures Appl., 71, 267-291 (1992) · Zbl 0838.35013
[45] Lebeau, G.: Équation des ondes amorties. Algebraic and Geometric Methods in Mathematical Physics (Kaciveli, 1993), pp. 73-109. Kluwer, Dordrecht (1996) · Zbl 0863.58068
[46] Martinez, A.; Nakamura, S.; Sordoni, V., Analytic smoothing effect for the Schrödinger equation with long-range perturbation, Comm. Pure Appl. Math., 59, 1330-1351 (2006) · Zbl 1122.35027 · doi:10.1002/cpa.20112
[47] Martinez, A.; Nakamura, S.; Sordoni, V., Analytic wave front set for solutions to Schrödinger equations, Adv. Math., 222, 1277-1307 (2009) · Zbl 1180.35016 · doi:10.1016/j.aim.2009.06.002
[48] Martinez, A.; Nakamura, S.; Sordoni, V., Analytic wave front set for solutions to Schrödinger equations II—long range perturbations, Comm. Part. Differ. Equat., 35, 2279-2309 (2010) · Zbl 1214.35055 · doi:10.1080/03605302.2010.523918
[49] Melrose, RB; Sjöstrand, J., Singularities of boundary value problems, I. Comm. Pure Appl. Math., 31, 593-617 (1978) · Zbl 0368.35020 · doi:10.1002/cpa.3160310504
[50] Melrose, RB; Sjöstrand, J., Singularities of boundary value problems, II. Comm. Pure Appl. Math., 35, 129-168 (1982) · Zbl 0546.35083 · doi:10.1002/cpa.3160350202
[51] Miller, L., Refraction of high-frequency waves density by sharp interfaces and semiclassical measures at the boundary, J. Math. Pures Appl., 79, 227-269 (2000) · Zbl 0963.35022 · doi:10.1016/S0021-7824(00)00158-6
[52] Mizuhara, R., Microlocal smoothing effect for the Schrödinger evolution equation in a Gevrey class, J. Math. Pures Appl., 91, 115-136 (2009) · Zbl 1173.35042 · doi:10.1016/j.matpur.2008.09.005
[53] Morimoto, Y.; Robbiano, L.; Zuily, C., Remark on the analytic smoothing for the Schrödinger equation, Indiana Univ. Math. J., 49, 1563-1579 (2000) · Zbl 0987.35009 · doi:10.1512/iumj.2000.49.1805
[54] Nakamura, S., Wave front set for solutions to Schrödinger equations, J. Funct. Anal., 256, 1299-1309 (2009) · Zbl 1155.35014 · doi:10.1016/j.jfa.2008.06.007
[55] Robbiano, L.; Zuily, C., Microlocal analytic smoothing effect for the Schrödinger equation, Duke Math. J., 100, 93-129 (1999) · Zbl 0941.35014 · doi:10.1215/S0012-7094-99-10003-2
[56] Robbiano, L.; Zuily, C., Effet régularisant microlocal analytique pour l’équation de Schrödinger: le cas des données oscillantes, Comm. Part. Differ. Equat., 25, 1891-1906 (2000) · Zbl 0959.35007 · doi:10.1080/03605300008821571
[57] Robbiano, L., Zuily, C.: Analytic theory for the quadratic scattering wave front set and application to the Schrödinger equation. Astérisque 283 (2002) · Zbl 1029.35001
[58] Robbiano, L.; Zuily, C., Remark on the Kato smoothing effect for Schrödinger equation with superquadratic potentials, Comm. Part. Differ. Equat., 33, 718-727 (2008) · Zbl 1147.35359 · doi:10.1080/03605300701517861
[59] Robbiano, L.; Zuily, C., The Kato smoothing effect for Schödinger equations with unbounded potentials in exterior domains, Int. Math. Res. Notices, 9, 1636-1698 (2009) · Zbl 1166.35012
[60] Rodnianski, I.; Schlag, W., Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math., 155, 451-513 (2004) · Zbl 1063.35035 · doi:10.1007/s00222-003-0325-4
[61] Rodnianski, I.; Schlag, W.; Soffer, A., Dispersive analysis of charge transfer models, Comm. Pure Appl. Math., 58, 149-216 (2005) · Zbl 1130.81053 · doi:10.1002/cpa.20066
[62] Ruzhansky, M., Sugimoto, M.: A new proof of global smoothing estimates for dispersive equations. In: Advances in Pseudo-differential Operators. Oper. Theory Adv. Appl., vol. 155, pp. 65-75. Birkhäuser, Basel (2004) · Zbl 1064.35154
[63] Ruzhansky, M.; Sugimoto, M., A smoothing property of Schrödinger equations in the critical case, Math. Ann., 335, 645-673 (2006) · Zbl 1109.35096 · doi:10.1007/s00208-006-0757-4
[64] Shananin, NA, Singularities of the solutions of the Schrödinger equation for a free particle, Math. Notes, 55, 626-631 (1994) · Zbl 0831.35040 · doi:10.1007/BF02110359
[65] Sjlin, P., Regularity of solutions to the Schrödinger equation, Duke Math. J., 55, 699-715 (1987) · Zbl 0631.42010 · doi:10.1215/S0012-7094-87-05535-9
[66] Staffilani, G.; Tataru, D., Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Part. Differ. Equat., 27, 1337-1372 (2002) · Zbl 1010.35015 · doi:10.1081/PDE-120005841
[67] Taniguchi, K., Gevrey regularizing effect for the initial value problem for a dispersive operator, Osaka J. Math., 41, 911-932 (2004) · Zbl 1072.35173
[68] Vaĭnberg, BR, Asymptotic Methods in Equations of Mathematical Physics (1989), New York: Gordon & Breach Science Publishers, New York · Zbl 0743.35001
[69] Vega, L.: Schrödinger equations : pointwise convergence to the initial data. Proc. A.M.S. 102, 874-878 (1988) · Zbl 0654.42014
[70] Vasy, A.; Zworski, M., Semiclassical estimates in asymptotically Euclidean scattering, Comm. Math. Phys., 212, 205-217 (2000) · Zbl 0955.58023 · doi:10.1007/s002200000207
[71] Watanabe, K., Smooth perturbations of the selfadjoint operator \(\vert{\Delta \vert }^{\alpha /2} \), Tokyo J. Math., 14, 239-250 (1991) · Zbl 0757.47015 · doi:10.3836/tjm/1270130504
[72] Wunsch, J., Propagation of singularities and growth for Schrödinger operators, Duke Math. J., 98, 137-186 (1999) · Zbl 0953.35121 · doi:10.1215/S0012-7094-99-09804-6
[73] Wunsch, J., The trace of the generalized harmonic oscillator, Ann. Inst. Fourier (Grenoble), 49, 351-373 (1999) · Zbl 0924.58098
[74] Yajima, K.: In: On Smoothing Property of Schrödinger Propagators. Lecture Notes in Mathematics, vol. 1450, pp. 20-35. Springer, Berlin (1990) · Zbl 0725.35084
[75] Yajima, K.; Zhang, G., Local smoothing property and Strichartz inequality for Schrödinger equations with potentials superquadratic at infinity, J. Differ. Equat., 202, 81-110 (2004) · Zbl 1060.35121 · doi:10.1016/j.jde.2004.03.027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.