×

Microlocal smoothing effect for the Schrödinger evolution equation in a Gevrey class. (English) Zbl 1173.35042

The author considers a time-independent Schrödinger equation with variable coefficients, and studies the propagation of the Gevrey regularity of the solution along non-trapping Hamilton vector fields. He proves that if the initial data decays (in some conical direction), then the solution becomes regular (in a corresponding microlocal direction). For this purpose he studies the propagation of the homogeneous Gevrey wave front set, which is a refinement of the usual wave front set. Such a result is already known in analytic cases, and the author extends it to Gevrey cases using almost analytic extensions of Gevrey functions.

MSC:

35J10 Schrödinger operator, Schrödinger equation
35A27 Microlocal methods and methods of sheaf theory and homological algebra applied to PDEs
35B65 Smoothness and regularity of solutions to PDEs

References:

[1] Craig, W.; Kappeler, T.; Strauss, W., Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pure Appl. Math., 48, 769-860 (1995) · Zbl 0856.35106
[2] Doi, S.-I., Smoothing effects of Schrödinger evolution groups on Riemannian manifolds, Duke Math. J., 82, 679-706 (1996) · Zbl 0870.58101
[3] Doi, S.-I., Smoothing effects of Schrödinger evolution equation and global behavior of geodesic flow, Math. Ann., 318, 355-389 (2000) · Zbl 0969.35029
[4] Hassell, A.; Wunsch, J., The Schrödinger propagator for scattering metrics, Ann. of Math., 162, 487-523 (2005) · Zbl 1126.58016
[5] Hörmander, L., The Analysis of Linear Partial Differential Operators III (1985), Springer-Verlag: Springer-Verlag Berlin · Zbl 0601.35001
[6] Ito, K., Propagation of singularities for Schrödinger equations on the Euclidean space with a scattering metric, Comm. Partial Differential Equations, 31, 1735-1777 (2006) · Zbl 1117.35005
[7] Ito, K.; Nakamura, S., Singularities of solutions to Schrödinger equation on scattering manifold, preprint · Zbl 1186.35004
[8] Jung, K., Phase space tunneling for operators with symbols in a Gevrey class, J. Math. Phys., 41, 4478-4496 (2000) · Zbl 0974.35136
[9] Kajitani, K.; Nishitani, T., The Hyperbolic Cauchy Problem, Lecture Notes in Math., vol. 1505 (1991), Springer-Verlag · Zbl 0762.35002
[10] Kajitani, K.; Taglialatela, G., Microlocal smoothing effect for Schrödinger equations in Gevrey spaces, J. Math. Soc. Japan, 55, 855-896 (2003) · Zbl 1053.35032
[11] Martinez, A., An Introduction to Semiclassical and Microlocal Analysis, Universitext (2002), Springer-Verlag: Springer-Verlag New York · Zbl 0994.35003
[12] Martinez, A.; Nakamura, S.; Sordoni, V., Analytic smoothing effect for the Schrödinger equation with long-range perturbation, Comm. Pure Appl. Math., 59, 1330-1351 (2006) · Zbl 1122.35027
[13] Martinez, A.; Nakamura, S.; Sordoni, V., Analytic wave front set for solutions to Schrödinger equations · Zbl 1180.35016
[14] Morimoto, Y.; Robbiano, L.; Zuily, C., Remark on the analytic smoothing for the Schrödinger equation, Indiana Univ. Math. J., 49, 1563-1579 (2000) · Zbl 0987.35009
[15] Nakamura, S., Propagation of the homogenous wave front set for Schrödinger equations, Duke Math. J., 126, 349-367 (2005) · Zbl 1130.35023
[16] Nakamura, S., Semiclassical singularity propagation property for Schrödinger equations
[17] Robbiano, L.; Zuily, C., Microlocal analytic smoothing effect for the Schrödinger equation, Duke Math. J., 100, 93-129 (1999) · Zbl 0941.35014
[18] Robbiano, L.; Zuily, C., Effet régularisant microlocal analytique pour l’équation de Schrödinger : le cas des données oscillantes, Comm. Partial Differential Equations, 25, 1891-1906 (2000) · Zbl 0959.35007
[19] Robbiano, L.; Zuily, C., Analytic theory for the quadratic scattering wave front set and application to the Schrödinger equation, Astérisque, 283 (2002) · Zbl 1029.35001
[20] Wunsch, J., Propagation of singularities and growth for Schrödinger operators, Duke Math. J., 98, 137-186 (1999) · Zbl 0953.35121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.