×

Phases of 4D scalar-tensor black holes coupled to Born-Infeld nonlinear electrodynamics. (English) Zbl 1172.83333

Summary: Recent results show that when nonlinear electrodynamics is considered, the no-scalar-hair theorems in the scalar-tensor theories (STT) of gravity, which are valid for the cases of neutral black holes and charged black holes in the Maxwell electrodynamics, can be circumvented. What is even more, in the present work, we find new non-unique, numerical solutions describing charged black holes coupled to nonlinear electrodynamics in a special class of scalar-tensor theories. One of the phases has a trivial scalar field and coincides with the corresponding solution in General Relativity. The other phases that we find are characterized by the value of the scalar field charge. The causal structure and some aspects of the stability of the solutions have also been studied. For the scalar-tensor theories considered, the black holes have a single, non-degenerate horizon, i.e. their causal structure resembles that of the Schwarzschild black hole. The thermodynamic analysis of the stability of the solutions indicates that a phase transition may occur.

MSC:

83C57 Black holes
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C22 Einstein-Maxwell equations
83C50 Electromagnetic fields in general relativity and gravitational theory

References:

[1] DOI: 10.1103/PhysRevD.75.084036 · doi:10.1103/PhysRevD.75.084036
[2] DOI: 10.1142/S0217732307023560 · Zbl 1128.83327 · doi:10.1142/S0217732307023560
[3] DOI: 10.1016/0550-3213(94)90143-0 · Zbl 0990.81645 · doi:10.1016/0550-3213(94)90143-0
[4] DOI: 10.1103/PhysRevD.54.5059 · doi:10.1103/PhysRevD.54.5059
[5] DOI: 10.1063/1.531513 · Zbl 0861.53086 · doi:10.1063/1.531513
[6] Banerjee N., Phys. Rev. D 47 pp 104024–
[7] DOI: 10.1098/rspa.1934.0010 · Zbl 0008.13803 · doi:10.1098/rspa.1934.0010
[8] DOI: 10.1142/S0217732389003099 · doi:10.1142/S0217732389003099
[9] DOI: 10.1007/BF01889380 · doi:10.1007/BF01889380
[10] DOI: 10.1103/PhysRevD.38.2445 · doi:10.1103/PhysRevD.38.2445
[11] Gibbons G., Nucl. Phys. B 454 pp 185– · Zbl 0925.83031 · doi:10.1016/0550-3213(95)00409-L
[12] Gibbons G., Phys. Lett. B 476 pp 515–
[13] DOI: 10.1103/PhysRevLett.80.5056 · doi:10.1103/PhysRevLett.80.5056
[14] DOI: 10.1103/PhysRevD.62.061501 · doi:10.1103/PhysRevD.62.061501
[15] DOI: 10.1103/PhysRevD.64.024027 · doi:10.1103/PhysRevD.64.024027
[16] DOI: 10.1103/PhysRevD.62.124013 · doi:10.1103/PhysRevD.62.124013
[17] DOI: 10.1088/0264-9381/18/9/305 · Zbl 0980.83020 · doi:10.1088/0264-9381/18/9/305
[18] DOI: 10.1103/PhysRevD.63.064007 · doi:10.1103/PhysRevD.63.064007
[19] DOI: 10.1103/PhysRevD.64.024009 · doi:10.1103/PhysRevD.64.024009
[20] DOI: 10.1142/S0217732301005564 · Zbl 1138.83344 · doi:10.1142/S0217732301005564
[21] DOI: 10.1088/0264-9381/20/2/308 · Zbl 1014.83033 · doi:10.1088/0264-9381/20/2/308
[22] Dey T., Phys. Lett. B 595 pp 484–
[23] DOI: 10.1103/PhysRevD.70.124034 · doi:10.1103/PhysRevD.70.124034
[24] DOI: 10.1103/PhysRevD.72.044006 · doi:10.1103/PhysRevD.72.044006
[25] DOI: 10.1103/PhysRevD.74.044025 · doi:10.1103/PhysRevD.74.044025
[26] DOI: 10.1103/PhysRevD.75.024021 · doi:10.1103/PhysRevD.75.024021
[27] Dehghani M. H., J. Cosmol. Astropart. Phys. 0702 pp 020–
[28] DOI: 10.1016/j.physletb.2007.11.015 · Zbl 1246.83178 · doi:10.1016/j.physletb.2007.11.015
[29] DOI: 10.1016/j.physletb.2008.02.017 · Zbl 1282.83041 · doi:10.1016/j.physletb.2008.02.017
[30] DOI: 10.1103/PhysRevD.68.044026 · doi:10.1103/PhysRevD.68.044026
[31] DOI: 10.1103/PhysRevLett.70.2220 · doi:10.1103/PhysRevLett.70.2220
[32] DOI: 10.1103/PhysRevD.54.1474 · doi:10.1103/PhysRevD.54.1474
[33] DOI: 10.1103/PhysRevD.58.124003 · doi:10.1103/PhysRevD.58.124003
[34] DOI: 10.1016/j.physrep.2005.10.001 · doi:10.1016/j.physrep.2005.10.001
[35] DOI: 10.1088/0264-9381/24/8/R01 · Zbl 1113.83003 · doi:10.1088/0264-9381/24/8/R01
[36] E. P. Jidkov, G. I. Makarenko and I. V. Puzynin, Physics of Elementary Particles and Atomic Nuclei 4 (JINR, Dubna, 1973) pp. 127–166.
[37] DOI: 10.1103/PhysRevD.7.2333 · Zbl 1369.83037 · doi:10.1103/PhysRevD.7.2333
[38] DOI: 10.1103/PhysRevD.72.104021 · doi:10.1103/PhysRevD.72.104021
[39] DOI: 10.1103/PhysRevD.72.044015 · doi:10.1103/PhysRevD.72.044015
[40] DOI: 10.1007/s10773-005-9024-9 · Zbl 1188.83054 · doi:10.1007/s10773-005-9024-9
[41] DOI: 10.1088/0264-9381/10/11/002 · Zbl 0794.53056 · doi:10.1088/0264-9381/10/11/002
[42] DOI: 10.1103/PhysRevD.48.583 · doi:10.1103/PhysRevD.48.583
[43] DOI: 10.1103/PhysRevD.64.024023 · doi:10.1103/PhysRevD.64.024023
[44] DOI: 10.1103/PhysRevD.10.2374 · doi:10.1103/PhysRevD.10.2374
[45] DOI: 10.1103/PhysRevD.51.4208 · doi:10.1103/PhysRevD.51.4208
[46] DOI: 10.1088/0264-9381/16/8/316 · Zbl 0943.83040 · doi:10.1088/0264-9381/16/8/316
[47] DOI: 10.1088/0264-9381/16/10/102 · Zbl 0939.83064 · doi:10.1088/0264-9381/16/10/102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.