×

Zariski decomposition of b-divisors. (English) Zbl 1271.14019

The Zariski decomposition on surfaces is one of the fundamental tools for studying their geometry. There have been several attempts to generalise this notion to higher dimensions. The paper under review proves a result about a decomposition of an effective b-divisor \(\mathbf{D}\) (introduced by Shokurov in the context of the Minimal Model Program) into “positive” and “negative” parts which satisfy some favourable properties that translate from the surface case; the main result of the paper, Theorem D, is slightly too technical to be presented here. In particular, the “positive” part carries information about the sections of multiples of \(\mathbf{D}\).
The result is strongly influenced by the work of Nakayama on the \(\sigma\)-decomposition [N. Nakayama, Zariski-decomposition and abundance. Tokyo: Mathematical Society of Japan (2004; Zbl 1061.14018)], and by a recent proof of the Zariski decomposition on surfaces in [T. Bauer, J. Algebr. Geom. 18, No. 4, 789–793 (2009; Zbl 1184.14007)].

MSC:

14E30 Minimal model program (Mori theory, extremal rays)

References:

[1] Bauer Th.: A simple proof for the existence of Zariski decompositions on surfaces. J. Algebr. Geom. 18(4), 789–793 (2009) · Zbl 1184.14007 · doi:10.1090/S1056-3911-08-00509-2
[2] Benveniste X.: Sur la décomposition de Zariski en dimension 3. C. R. Acad. Sci. Paris Sér. I Math. 295(2), 107–110 (1982) · Zbl 0524.14008
[3] Benveniste X.: Sur l’anneau canonique de certaines variétés de dimension 3. Invent. Math. 73(1), 157–164 (1983) · Zbl 0539.14025 · doi:10.1007/BF01393831
[4] Boucksom, S., de Fernex, T., Favre, C.: The volume of an isolated singularity. math.AG/1011.2847 · Zbl 1251.14026
[5] Boucksom, S., Favre, C., Jonsson, M.: Differentiability of divisors and a problem of Teissier. math.AG/0608260 · Zbl 1162.14003
[6] Corti, A. (ed.): Flips for 3-folds and 4-folds. Oxford Lecture Series in Mathematics and its Applications, vol. 35. Oxford University Press, Oxford (2007) · Zbl 05175029
[7] Cutkosky S.: Zariski decomposition of divisors on algebraic varieties. Duke Math. J. 53(1), 149–156 (1986) · Zbl 0604.14002 · doi:10.1215/S0012-7094-86-05309-3
[8] Demailly J-P., Peternell T., Schneider M.: Pseudo-effective line bundles on compact Kähler manifolds. Int. J. Math. 12(6), 689–741 (2001) · Zbl 1111.32302 · doi:10.1142/S0129167X01000861
[9] Fujita, T.: Canonical rings of algebraic varieties. Classification of algebraic and analytic manifolds (Katata, 1982). Programming Mathematics, vol. 39, pp. 65–70. Birkhäuser, Boston (1983)
[10] Kawamata Y. The zariski decomposition of log-canonical divisors. Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985). Proceedings of Symposia in Pure Mathematics Part 1, vol. 46, pp. 425–433. Am. Math. Soc., Providence (1987)
[11] Moriwaki A.: Semiampleness of the numerically effective part of Zariski decomposition. J. Math. Kyoto Univ. 26(3), 465–481 (1986) · Zbl 0621.14005
[12] Lazarsfeld R.: Positivity in algebraic geometry I.II. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 48–49. Springer, Berlin (2004)
[13] Nakayama N.: Zariski-decomposition and abundance. MSJ Memoirs, vol. 14. Mathematical Society of Japan, Tokyo (2004) · Zbl 1061.14018
[14] Prokhorov, Yu.G.: On the Zariski decomposition problem. Tr. Mat. Inst. Steklova 240, 43–72 (2003); translation in Proc. Steklov Inst. Math. 240(1), 37–65 (2003) · Zbl 1092.14024
[15] Shokurov, V.V.: Prelimiting flips. Tr. Mat. Inst. Steklova 240, 82–219 (2003); translation in Proc. Steklov Inst. Math. 240(1), 75–213 (2003) · Zbl 1082.14019
[16] Tsuji, H.: Analytic Zariski decomposition. International Symposium ”holomorphic mappings, diophantine geometry and related topics” (Kyoto, 1992)
[17] Wilson P.M.H.: On the canonical ring of algebraic varieties. Compositio Math. 43(3), 365–385 (1981) · Zbl 0459.14006
[18] Zariski O.: The theorem of Riemann–Roch for high multiples of an effective divisor on an algebraic surface. Ann. Math. 56(2), 560–615 (1962) · Zbl 0124.37001 · doi:10.2307/1970376
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.