×

A hybrid finite volume/finite element method for incompressible generalized Newtonian fluid flows on unstructured triangular meshes. (English) Zbl 1269.76074

Summary: This paper presents a hybrid finite volume/finite element method for the incompressible generalized Newtonian fluid flow (Power-Law model). The collocated (i.e. non-staggered) arrangement of variables is used on the unstructured triangular grids, and a fractional step projection method is applied for the velocity-pressure coupling. The cell-centered finite volume method is employed to discretize the momentum equation and the vertex-based finite element for the pressure Poisson equation. The momentum interpolation method is used to suppress unphysical pressure wiggles. Numerical experiments demonstrate that the current hybrid scheme has second order accuracy in both space and time. Results on flows in the lid-driven cavity and between parallel walls for Newtonian and Power-Law models are also in good agreement with the published solutions.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
76A05 Non-Newtonian fluids
Full Text: DOI

References:

[1] Patankar S.V., Spalding D.B.: A calculation procedure for heat, mass and momentum transfer i three-dimensional parabolic flows. Int. J. Heat Mass Transfer 15, 1787–1806 (1972) · Zbl 0246.76080 · doi:10.1016/0017-9310(72)90054-3
[2] Chorin A.J.: Numerical solution of the Navier–Stokes equations. Math. Comp. 22, 745–762 (1968) · Zbl 0198.50103 · doi:10.1090/S0025-5718-1968-0242392-2
[3] Temam R.: Sur l’approximation de la solution del equations Navier–Stokes par la methode des pas fractionnaires (II). Arch. Rat. Mech. Anal. 32, 377–385 (1969) · Zbl 0207.16904
[4] Rhie C.M., Chow W.L.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983) · Zbl 0528.76044 · doi:10.2514/3.8284
[5] Zang Y., Street R.L., Koseff J.R.: A non-staggered grid, fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates. J. Comput. Phys. 114, 18–33 (1994) · Zbl 0809.76069 · doi:10.1006/jcph.1994.1146
[6] Boivin S., Cayré F., Hérard J.M.: A finite volume method to solve the Navier–Stokes equations for incompressible flows on unstructured meshes. Int. J. Therm. Sci. 39, 806–825 (2000) · doi:10.1016/S1290-0729(00)00276-3
[7] Kim D., Choi H.: A second-order time-accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids. J. Comput. Phys. 162, 411–428 (2000) · Zbl 0985.76060 · doi:10.1006/jcph.2000.6546
[8] Gao W., Liu R.: The finite-volume projection method on hybrid collocated unstructured triangular grids for incompressible viscous flows. J. Hydrodyn. Ser. B 2, 201–211 (2009) · doi:10.1016/S1001-6058(08)60137-7
[9] Lien F.S.: A pressure-based unstructured grid method for all-speed flows. Int. J. Numer. Methods Fluids 33, 355–374 (2000) · Zbl 0977.76057 · doi:10.1002/1097-0363(20000615)33:3<355::AID-FLD12>3.0.CO;2-X
[10] Tu S., Aliabadi S.: Development of a hybrid finite volume/element solver for incompressible flows. Int. J. Numer. Methods Fluids 55, 177–203 (2007) · Zbl 1205.76173 · doi:10.1002/fld.1454
[11] Hwang Y.H.: Calculations of incompressible flow on a staggered triangular grid, Part I: mathematical formulation. Numer. Heat Transfer Part B 27, 323–336 (1995) · doi:10.1080/10407799508914960
[12] Crochet M.J., Davies A.R., Walters K.: Numerical Simulation of Non-Newtonian Flow. Elsevier, Amsterdam (1984) · Zbl 0583.76002
[13] Bercovier M., Engelman M.: A finite element method for incompressible non-Newtonian flows. J. Comput. Phys. 36, 313–326 (1980) · Zbl 0457.76005 · doi:10.1016/0021-9991(80)90163-1
[14] Bell B.C., Surana K.S.: p-version least squares finite element formulation for two-dimensional incompressible, non-Newtonian isothermal and non-isothermal fluid flow. Int. J. Numer. Meth. Fluids 18, 127–162 (1994) · Zbl 0816.76043 · doi:10.1002/fld.1650180202
[15] Bose A., Carey G.F.: Least-squares p-r finite element methods for incompressible non-Newtonian flows. Comput. Methods Appl. Mech. Eng. 180, 431–458 (1999) · Zbl 0966.76045 · doi:10.1016/S0045-7825(99)00177-2
[16] Saramito P., Roquet N.: An adapative finite element method for viscoplastic fluid flows in pipes. Comput. Methods Appl. Mech. Eng. 190, 5391–5412 (2001) · Zbl 1002.76071 · doi:10.1016/S0045-7825(01)00175-X
[17] Bao W.: An economical finite element approximation of generalized Newtonian flows. Comput. Methods Appl. Mech. Eng. 191, 3637–3648 (2002) · Zbl 1101.76351 · doi:10.1016/S0045-7825(02)00310-9
[18] Dean E.J., Glowinski R., Guidoboni G.: On the numerical simulation of Bingham visco-plastic flow: old and new results. J. Non-Newtonian Fluid Mech. 142, 36–62 (2007) · Zbl 1107.76061 · doi:10.1016/j.jnnfm.2006.09.002
[19] Borggaard J., Iliescua T., Roop J.P.: An improved penalty method for power-law Stokes problems. J. Comput. Appl. Math. 223, 646–658 (2009) · Zbl 1153.76037 · doi:10.1016/j.cam.2008.02.002
[20] Blazek J.: Computational Fluid Dynamics: Principles and Applications. Elsevier, Amsterdam (2001) · Zbl 0995.76001
[21] Lenonard B.P.: Simple high-accuracy resolution program for convective modelling discontinuities. Int. J. Numer. Meth. Fluids 8, 1291–1318 (1988) · Zbl 0667.76125 · doi:10.1002/fld.1650081013
[22] Gaskell P.H., Lau A.K.C.: Curvature-compensated convective transport: SMART, a new boundedness-preserving transport algorithm. Int. J. Numer. Meth. Fluids 8, 617–641 (1988) · Zbl 0668.76118 · doi:10.1002/fld.1650080602
[23] Van Leer B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979) · Zbl 1364.65223 · doi:10.1016/0021-9991(79)90145-1
[24] Neofytou P.: A 3rd ordr upwind finite volume method for generalised Newtonian fluid flows. Adv. Eng. Softw. 36, 664–680 (2005) · Zbl 1331.76080 · doi:10.1016/j.advengsoft.2005.03.011
[25] Neofytou P., Drikakis D.: Effects of blood models on flows through a stenosis. Int. J. Numer. Methods Fluids 43, 597–635 (2003) · Zbl 1043.76500 · doi:10.1002/fld.496
[26] Miranda A.I.P., Oliveira P.J., Pinho F.T.: Steady and unsteady laminar flows of Newtonian and generalized Newtonian fluids in a planar T-junction. Int. J. Numer. Meth. Fluids 57, 295–328 (2008) · Zbl 1241.76122 · doi:10.1002/fld.1626
[27] Tomé M.F., Duffy B., McKee S.: A numerical technique for solving unsteady non-Newtonian free surface flows. J. Non-Newtonian Fluid Mech. 62, 9–34 (1996) · doi:10.1016/0377-0257(95)01391-1
[28] Tomé M.F., Grossi L. et al.: A numerical method for solving three-dimensional generalized Newtonian free surface flows. J. Non-Newtonian Fluid Mech. 123, 85–103 (2004) · Zbl 1134.76414 · doi:10.1016/j.jnnfm.2004.06.012
[29] Gabbanelli S., Drazer G., Koplik J.: Lattice Boltzmann method for non-Newtonian (power-law) fluids. Phys. Rev. E 72, 04631 (2005)
[30] Yoshino M., Hotta Y., Hirozane T., Endo M.: A numerical method for incompressible non-Newtonian fluid flows based on the lattice Boltzmann method. J. Non-Newtonian Fluid Mech. 147, 69–78 (2007) · Zbl 1195.76333 · doi:10.1016/j.jnnfm.2007.07.007
[31] Pakdemirli M., Aksoy Y., Yürüsoy M., Khalique C.M.: Symmetries of boundary layer equations of power-law fluids of second grade. Acta Mech. Sin. 24(6), 661–670 (2008) · Zbl 1257.76097 · doi:10.1007/s10409-008-0172-z
[32] Van Kan J.: A second-order accurate pressure-correction shceme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 3, 870–891 (1986) · Zbl 0594.76023 · doi:10.1137/0907059
[33] Gresho P.M.: On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent matrix, Part 1: theory. Int. J. Numer. Methods Fluids 11, 587–620 (1990) · Zbl 0712.76035 · doi:10.1002/fld.1650110509
[34] Khosla P.K., Rubin S.G.: A diagonally dominant second-order accurate implicit scheme. Comput. Fluids 2, 207–209 (1974) · Zbl 0335.76009 · doi:10.1016/0045-7930(74)90014-0
[35] Mathur S.R., Murthy J.Y.: A pressure-based method for unstructured meshes. Numer. Heat Transfer, Part B 31, 195–215 (1997) · doi:10.1080/10407799708915105
[36] Carey G.F., Krishnan R.: Penalty approximation of Stokes flow. Comput. Methods Appl. Mech. Eng. 35, 169–206 (1982) · doi:10.1016/0045-7825(82)90133-5
[37] Ghia U., Ghia K.N., Shin C.T.: High-resolutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982) · Zbl 0511.76031 · doi:10.1016/0021-9991(82)90058-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.