×

Symmetries of boundary layer equations of power-law fluids of second grade. (English) Zbl 1257.76097

Summary: A modified power-law fluid of second grade is considered. The model is a combination of power-law and second grade fluid in which the fluid may exhibit normal stresses, shear thinning or shear thickening behaviors. The equations of motion are derived for two dimensional incompressible flows, and from which the boundary layer equations are derived. Symmetries of the boundary layer equations are found by using Lie group theory, and then group classification with respect to power-law index is performed. By using one of the symmetries, namely the scaling symmetry, the partial differential system is transformed into an ordinary differential system, which is numerically integrated under the classical boundary layer conditions. Effects of power-law index and second grade coefficient on the boundary layers are shown and solutions are contrasted with the usual second grade fluid solutions.

MSC:

76M60 Symmetry analysis, Lie group and Lie algebra methods applied to problems in fluid mechanics
76A05 Non-Newtonian fluids

Software:

LIE
Full Text: DOI

References:

[1] Man C.S., Sun Q.X.: On the significance of normal stress effects in the flow of glaciers. J. Glaciology 33, 268–273 (1987)
[2] Man C.S.: Nonsteady channel flow of ice as a modified second-order fluid with power-law viscosity. Arch. Rational Mech. Anal. 119, 35–57 (1992) · Zbl 0757.76001 · doi:10.1007/BF00376009
[3] Hayat T., Asghar S., Khalique C.M., Ellahi R.: Influence of partial slip on flows of second grade fluid in a porous medium. J. Porous Media 10, 797–805 (2007) · doi:10.1615/JPorMedia.v10.i8.50
[4] Hayat T., Abbas Z., Sajid M.: On the analytical solution of Magnetohydrodynamic flow of a second grade fluid over a shrinking sheet. J. Appl. Mech. 74, 1165–1171 (2007) · doi:10.1115/1.2723820
[5] Hayat T., Ellahi R., Asghar S.: Unsteady magnetohydrodynamic non-Newtonian flow due to non-coaxial rotations of disk and a fluid at infinity. Chem. Eng. Commun. 194, 37–49 (2007) · doi:10.1080/00986440600642868
[6] Asghar S., Hanif K., Hayat T., Khalique C.M.: MHD non-Newtonian flow due to non-coaxial rotations of an accelerated disk and a fluid at infinity. Comm. Nonlinear Sci. Num. Simul. 12, 465–485 (2007) · Zbl 1110.35311 · doi:10.1016/j.cnsns.2005.04.006
[7] Hayat T., Sajid M.: Analytical solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet. Int. J. Heat Mass Transfer 50, 75–84 (2007) · Zbl 1104.80006 · doi:10.1016/j.ijheatmasstransfer.2006.06.045
[8] Hayat T., Abbas Z., Sajid M., Asghar S.: The influence of thermal radiation on MHD flow of a second grade fluid. Int. J. Heat Mass Transfer 50, 931–941 (2007) · Zbl 1124.80325 · doi:10.1016/j.ijheatmasstransfer.2006.08.014
[9] Hayat T., Khan M., Ayub M.: Some analytical solutions for second grade fluid flows for cylindrical geometries. Math. Comput. Model. 43, 16–29 (2007) · Zbl 1090.76006 · doi:10.1016/j.mcm.2005.04.009
[10] Franchi H., Straughan B.: Stability and nonexistence results in the generalized theory of a fluid of second grade. J. Math. Anal. Appl. 180, 122–137 (1993) · Zbl 0797.76002 · doi:10.1006/jmaa.1993.1388
[11] Gupta G., Massoudi M.: Flow of a generalized second grade fluid between heated plates. Acta Mech. 99, 21–33 (1993) · Zbl 0774.76005 · doi:10.1007/BF01177232
[12] Massoudi M., Phuoc T.X.: Fully developed flow of a modified second grade fluid with temperature dependent viscosity. Acta Mech. 150, 23–37 (2001) · Zbl 0993.76005 · doi:10.1007/BF01178542
[13] Massoudi M., Phuoc T.X.: Flow of a generalized second grade non-Newtonian fluid with variable viscosity. Continuum Mech. Thermodyn. 16, 529–538 (2004) · Zbl 1158.76304 · doi:10.1007/s00161-004-0178-0
[14] Hayat T., Khan M.: Homotopy solutions for a generalized second-grade fluid past a porous plate. Nonlinear Dyn. 42, 395–405 (2005) · Zbl 1094.76005 · doi:10.1007/s11071-005-7346-z
[15] Dunn J.E., Fosdick R.L.: Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade. Arch. Rational Mech. Anal. 56, 191–252 (1974) · Zbl 0324.76001 · doi:10.1007/BF00280970
[16] Rajagopal K.R., Fosdick R.L.: Thermodynamics and stability of fluids of third grade. Proc. R. Soc. Lond. A. 369, 351–377 (1980) · Zbl 0441.76002 · doi:10.1098/rspa.1980.0005
[17] Dunn J.E., Rajagopal K.R.: Fluids of differential type: critical review and thermodynamic analysis. Int. J. Eng. Sci. 33, 689–729 (1995) · Zbl 0899.76062 · doi:10.1016/0020-7225(94)00078-X
[18] Bluman G.W., Kumei S.: Symmetries and differential equations. Springer, New York (1989) · Zbl 0698.35001
[19] Stephani H.: Differential equations: their solution using symmetries. Cambridge University Press, New York (1989) · Zbl 0704.34001
[20] Hayat T., Kara A.H., Momoniat E.: Exact flow of a third grade fluid on a porous wall. Int. J. Non-Linear Mech. 38, 1533–1537 (2003) · Zbl 1348.76016 · doi:10.1016/S0020-7462(02)00116-6
[21] Mohyuddin M.R., Hayat T., Mahomed F.M., Asghar S.: On solutions of some non-linear differential equations arising in Newtonian and non-Newtonian fluids. Nonlinear Dyn. 35, 229–248 (2004) · Zbl 1068.76503 · doi:10.1023/B:NODY.0000027920.92871.99
[22] Hayat T., Kara A.H., Momoniat E.: The unsteady flow of a fourth grade fluid past a porous plate. Math. Comput. Model. 41, 1347–1353 (2005) · Zbl 1080.76006 · doi:10.1016/j.mcm.2004.01.010
[23] Hayat T., Kara A.H.: A variational analysis of a non-Newtonian flow in a rotating system. Int. J. Comput. Fluid Dyn. 20, 157–162 (2006) · Zbl 1131.76007 · doi:10.1080/10618560600836080
[24] Hayat T., Kara A.H.: Couette flow of a third grade fluid with variable magnetic field. Math. Comput. Model. 43, 132–137 (2006) · Zbl 1105.76007 · doi:10.1016/j.mcm.2004.12.009
[25] Aksoy Y., Pakdemirli M., Khalique C.M.: Boundary layer equations and stretching sheet solutions for the modified second grade fluid. Int. J. Eng. Sci. 45, 829–841 (2007) · Zbl 1213.76060 · doi:10.1016/j.ijengsci.2007.05.006
[26] Pakdemirli M., Şhubi E.S.: Boundary layer theory for second order fluids. Int. J. Eng. Sci. 30, 523–532 (1992) · Zbl 0747.76013 · doi:10.1016/0020-7225(92)90042-F
[27] Pakdemirli M.: The boundary layer equations of third grade fluids. Int. J. Non-Linear Mech. 27, 785–793 (1992) · Zbl 0764.76004 · doi:10.1016/0020-7462(92)90034-5
[28] Pakdemirli M.: Conventional and multiple deck boundary layer approach to second and third grade fluids. Int. J. Eng. Sci. 32(1), 141–154 (1994) · Zbl 0794.76004 · doi:10.1016/0020-7225(94)90156-2
[29] Head A.K.: LIE a PC program for Lie analysis of differential equations. Comput. Phys. Commun. 71, 241–248 (1993) · Zbl 0854.65055 · doi:10.1016/0010-4655(93)90007-Y
[30] Rajagopal K.R., Szeri A.Z., Troy W.: An existence theorem for the flow of a non-Newtonian fluid past an infinite porous plate. Int. J. Non-Linear Mech. 21, 279–289 (1986) · Zbl 0599.76013 · doi:10.1016/0020-7462(86)90035-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.