×

Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow. (English) Zbl 1268.35087

Summary: We prove existence and uniqueness of measure solutions for the Cauchy problem associated to the (vectorial) continuity equation with a non-local flow. We also give a stability result with respect to various parameters.

MSC:

35L65 Hyperbolic conservation laws

References:

[1] Ambrosio L., Gangbo W.: Hamiltonian ODEs in the Wasserstein space of probability measures. Commun. Pure Appl. Math. 61(1), 18-53 (2008) · Zbl 1132.37028 · doi:10.1002/cpa.20188
[2] Armbruster, D., Degond, P., Ringhofer, C.: A model for the dynamics of large queuing networks and supply chains. SIAM J. Appl. Math. 66(3), 896-920 (2006, electronic) · Zbl 1107.90002
[3] Armbruster D., Marthaler D., Ringhofer C., Kempf K., Jo T.: A continuum model for a re-entrant factory. Oper. Res. 54(5), 933-950 (2006) · Zbl 1167.90477 · doi:10.1287/opre.1060.0321
[4] Bellomo N., Dogbe C.: On the modeling of traffic and crowds: a survey of models, speculations, and perspectives. SIAM Rev. 53(3), 409-463 (2011) · Zbl 1231.90123 · doi:10.1137/090746677
[5] Carrillo J.A., DiFrancesco M., Figalli A., Laurent T., Slepčev D.: Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J. 156(2), 229-271 (2011) · Zbl 1215.35045 · doi:10.1215/00127094-2010-211
[6] Colombo R., Lécureux-Mercier M.: An analytical framework to describe the interactions between individuals and a continuum. J. Nonlinear Sci. 22, 39-61 (2012) · Zbl 1241.35208 · doi:10.1007/s00332-011-9107-0
[7] Colombo, R.M., Garavello, M., Lécureux-Mercier, M.: A class of non-local models for pedestrian traffic. Mathematical Models and Methods in Applied Sciences (M3AS) (2012, to appear) · Zbl 1248.35213
[8] Colombo R.M., Herty M., Mercier M.: Control of the continuity equation with a non local flow. ESAIM Control Optim. Calc. Var. 17(2), 353-379 (2011) · Zbl 1232.35176 · doi:10.1051/cocv/2010007
[9] Colombo R.M., Lécureux-Mercier M.: Nonlocal crowd dynamics models for several populations. Acta Mathematica Scientia 32(1), 177-196 (2012) · Zbl 1265.35214 · doi:10.1016/S0252-9602(12)60011-3
[10] Coron J., Kawski M., Wang Z.: Analysis of a conservation law modeling a highly re-entrant manufacturing system. Discrete Contin. Dyn. Syst. Ser. B 14(4), 1337-1359 (2010) · Zbl 1207.35218 · doi:10.3934/dcdsb.2010.14.1337
[11] Coscia, V., Canavesio, C.: First-order macroscopic modelling of human crowd dynamics. Math. Models Methods Appl. Sci. 18(suppl.), 1217-1247 (2008) · Zbl 1171.91018
[12] Cristiani E., Piccoli B., Tosin A.: Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Model. Simul. 9(1), 155-182 (2011) · Zbl 1221.35232 · doi:10.1137/100797515
[13] Dafermos, C.M.: Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften, vol. 325, 2nd edn. Springer, Berlin (2005). · Zbl 1078.35001
[14] Di Francesco M., Markowich P.A., Pietschmann J., Wolfram M.: On the Hughes’ model for pedestrian flow: the one-dimensional case. J. Differ. Equ. 250(3), 1334-1362 (2011) · Zbl 1229.35139 · doi:10.1016/j.jde.2010.10.015
[15] DiPerna R.J., Lions P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511-547 (1989) · Zbl 0696.34049 · doi:10.1007/BF01393835
[16] Helbing D., Johansson A., Al-Abideen H.Z.: Dynamics of crowd disasters: An empirical study. Phys. Rev. E 75, 046109 (2007) · doi:10.1103/PhysRevE.75.046109
[17] Hughes R.L.: A continuum theory for the flow of pedestrians. Transp. Res. Part B Methodol. 36(6), 507-535 (2002) · doi:10.1016/S0191-2615(01)00015-7
[18] Hughes R.L.: The flow of human crowds. Annu. Rev. Fluid Mech. 35, 169-182 (2003) · Zbl 1125.92324 · doi:10.1146/annurev.fluid.35.101101.161136
[19] Loeper G.: Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. (9) 86(1), 68-79 (2006) · Zbl 1111.35045
[20] Maury B., Roudneff-Chupin A., Santambrogio F.: A macroscopic crowd motion model of the gradient-flow type. Math. Models Methods Appl. Sci. 20(10), 1787-1821 (2010) · Zbl 1223.35116 · doi:10.1142/S0218202510004799
[21] Maury B., Roudneff-Chupin A., Santambrogio F., Juliette V.: Handling congestion in crowd motion modeling. Netw. Heterog. Media 6(3), 485-519 (2011) · Zbl 1260.49039 · doi:10.3934/nhm.2011.6.485
[22] Piccoli, B., Rossi, F.: Transport equation with nonlocal velocity in wasserstein spaces: existence, uniqueness and numerical schemes. (2011, preprint) · Zbl 1263.35202
[23] Piccoli, B., Tosin, A.: Time-evolving measures and macroscopic modeling of pedestrian flow. Arch. Ration. Mech. Anal. 1-32 (2010) · Zbl 1237.90057
[24] Rubinstein J.: Evolution equations for stratified dilute suspensions. Phys. Fluids A 2(1), 3-6 (1990) · Zbl 0696.76127 · doi:10.1063/1.857690
[25] Villani, C.: Topics in optimal transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003) · Zbl 1106.90001
[26] Zumbrun K.: On a nonlocal dispersive equation modeling particle suspensions. Quart. Appl. Math. 57(3), 573-600 (1999) · Zbl 1020.35058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.