×

A macroscopic crowd motion model of gradient flow type. (English) Zbl 1223.35116

The paper presents a mathematical model for describing the behaviour of a crowd in an emergency evacuation situation. The model is based on the gradient flow approach for a suitable functional, according to the well established theory of minimizing movements, introduced in [E. De Giorgi, in: Res. Notes Appl. Math. 29, 81–98 (1993; Zbl 0851.35052)] and developed in the book [L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Basel: Birkhäuser (2008; Zbl 1145.35001)].
Given a room \(\Omega\) with an exit \(\Gamma_{\text{out}}\), the model, of Eulerian type, consists in a gradient flow evolution, in the space of probabilities \({\mathcal P}(\overline\Omega)\) endowed with the Wasserstein distance \(W_2\), from an initial given density \(\rho_0\). The functional governing the model is
\[ F(\rho)= \begin{cases} \int_\Omega D(x)\,d\rho\quad &\text{if }\rho\in K,\\ +\infty\quad &\text{otherwise}\end{cases} \]
being \(D(x)\) the distance of the point \(x\in\Omega\) from \(\Gamma_{\text{out}}\) and
\[ K= \{\rho\in{\mathcal P}(\overline\Omega),\;\rho= \rho_\Omega(x)\,dx+ \rho_{\text{out}},\;\rho_\Omega\leq 1,\;\text{supp}(\rho_{\text{out}}) \subset \Gamma_{\text{out}}\}. \]
It is shown that the discrete implicit Euler scheme converges to a limit density-velocity pair \((\rho,u)\) satisfying the continuity equation
\[ \partial_t\rho+ \text{div}(\rho u)= 0,\quad \rho(0,\cdot)= \rho_0, \]
and such that \(u(t,\cdot)= P_{C_{\rho(t,\cdot)}}(-\nabla D)\), where \(P_C\) denotes the \(L^2\)-projection on \(C\) and \(C_{\rho(t,\cdot)}\) is the convex cone of feasible velocities \(u\) with \(\text{div\,}u\geq 0\) on \(\{\rho(t,\cdot)= 1\}\).
Some examples illustrating the model, as well as some modeling issues and possible extensions, are included at the end of the paper.

MSC:

35F31 Initial-boundary value problems for nonlinear first-order PDEs
34G25 Evolution inclusions
49J45 Methods involving semicontinuity and convergence; relaxation
90B20 Traffic problems in operations research

References:

[1] Ambrosio, L., Rend. Accad. Naz. Sci. XL Mem. Mat. Sci. Fis. Natur.113, 191 (1995).
[2] Ambrosio, L.; Gigli, N.; Savaré, G., Lectures in Mathematics, 2005, ETH Zürich · Zbl 1090.35002
[3] Ambrosio, L.; Savaré, G.; Dafermos, C. M.; Feireisl, E., Handbook of Differential Equations, Evolutionary Equations, 3, 2007, Elsevier · Zbl 1179.35003
[4] Bellomo, N.Dogbe, C., Math. Models Methods Appl. Sci.18, 1317 (2008), DOI: 10.1142/S0218202508003054. · Zbl 1198.92036
[5] Benamou, J.-D.Brenier, Y., Numer. Math.84, 375 (2001), DOI: 10.1007/s002110050002.
[6] Berthelin, F., Math. Models Methods Appl. Sci.12, 249 (2002), DOI: 10.1142/S0218202502001635. · Zbl 1027.35079
[7] Blanchet, A.; Calvez, V.; Carrillo, J. A., SIAM J. Numer. Anal.
[8] Bouchut, F.et al., J. Nonlinear Sci.10, 639 (2000), DOI: 10.1007/s003320010006.
[9] Buttazzo, G.Jimenez, C.Oudet, E., SIAM J. Control Optim.48, 1961 (2007), DOI: 10.1137/07070543X.
[10] Buttazzo, G.Santambrogio, F., SIAM J. Math. Anal.37, 514 (2005), DOI: 10.1137/S0036141003438313.
[11] Carrillo, J. A.Gualdani, M. P.Toscani, G., R. Acad. Sci. Paris Ser. I338, 815 (2004).
[12] Chalons, C., SIAM J. Sci. Comput.29, 539 (2007), DOI: 10.1137/050641211.
[13] Chalons, C., Traffic and Granular Flows ’05 (Springer, 2007) pp. 347-356.
[14] Colombo, R. M.Rosini, M. D., Math. Methods Appl. Sci.28, 1553 (2005), DOI: 10.1002/mma.624. · Zbl 1108.90016
[15] Coscia, V.Canavesio, C., Math. Models Methods Appl. Sci.18, 1217 (2008), DOI: 10.1142/S0218202508003017. · Zbl 1171.91018
[16] Dacorogna, B.Moser, J., Ann. Inst. H. Poincaré Anal. Non Linéaire7, 1 (1990). · Zbl 0707.35041
[17] De Giorgi, E., Boundary Value Problems for PDE and Applications, eds. Baiocchi, C.Lions, J. L. (Masson, 1993) pp. 81-98. · Zbl 0851.35052
[18] P. Degond, L. Navoret, R. Bon and D. Sanchez, Congestion in a macroscopic model of self-driven particles modeling gregariousness, to appear.. · Zbl 1187.82086
[19] Dogbe, C., Comput. Appl. Math.567, 1884 (2008).
[20] Edmond, J. F.Thibault, L., Math. Program Ser. B104, 347 (2005), DOI: 10.1007/s10107-005-0619-y.
[21] Edmond, J. F.Thibault, L., J. Diff. Eqns.226, 135 (2006), DOI: 10.1016/j.jde.2005.12.005.
[22] Helbing, D., Complex Syst.6, 391 (1992). · Zbl 0776.92016
[23] Helbing, D.Molnár, P.Schweitzer, F., Evolution of Natural Structures, Sonderforschungsbereich230 (Stuttgart, 1994) pp. 229-234.
[24] Helbing, D.Molnár, P., Phys. Rev. E51, 4282 (1995), DOI: 10.1103/PhysRevE.51.4282.
[25] Helbing, D.Vicsek, T., New J. Phys.1, 13.1 (1999), DOI: 10.1088/1367-2630/1/1/313.
[26] Helbing, D.Farkas, I.Vicsek, T., Nature407, 487 (2000), DOI: 10.1038/35035023.
[27] Henderson, L. F., Nature229, 381 (1971), DOI: 10.1038/229381a0.
[28] Hoogendoorn, S. P.Bovy, P. H. L., Transp. Res. Part B38, 571 (2004), DOI: 10.1016/j.trb.2002.12.001.
[29] Hoogendoorn, S. P.Bovy, P. H. L., Transp. Res. Part B38, 169 (2004), DOI: 10.1016/S0191-2615(03)00007-9.
[30] Hughes, R. L., Transport. Res. Part B36, 507 (2002), DOI: 10.1016/S0191-2615(01)00015-7.
[31] Hughes, R. L., Ann. Rev. Fluid Mech.35, 169 (2003), DOI: 10.1146/annurev.fluid.35.101101.161136. · Zbl 1125.92324
[32] Jordan, R.Kinderlehrer, D.Otto, F., SIAM J. Math. Anal.29, 1 (1998), DOI: 10.1137/S0036141096303359.
[33] Kantorovitch, L. V., Dokl. Akad. Nauk. SSSR37, 227 (1942).
[34] Maury, B.; Venel, J., Traffic and Granular Flow, 2007, Springer
[35] Maury, B.Venel, J., C. R. Acad. Sci. Paris, Ser. I346, 1245 (2008).
[36] Moreau, J. J., J. Diff. Eqns.26, 346 (1977), DOI: 10.1016/0022-0396(77)90085-7.
[37] Otto, F., Comm. Partial Diff. Eqns.26, 101 (2001), DOI: 10.1081/PDE-100002243.
[38] B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, to appear.. · Zbl 1237.90057
[39] Piccoli, B.; Tosin, A., Cont. Mech. Thermodyn.
[40] M. Roesch, Contribution à la description géométrique des fluides parfaits incompressibles, Ph.D. Thesis, Université de Paris 6..
[41] Venel, J., Pedestrian and Evacuation Dynamics, 2008, Springer
[42] Villani, C., Topics in optimal transportation, 58, 2003, Amer. Math. Soc. · Zbl 1106.90001
[43] Villani, C., Grundlehren Math. Wiss.338, (2009), DOI: 10.1007/978-3-540-71050-9.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.