×

Evolution of density-dependent dispersal in a structured metapopulation. (English) Zbl 1168.92039

Summary: We study the evolution of density-dependent dispersal in a structured metapopulation subject to local catastrophes that eradicate local populations. To this end we use the theory of structured metapopulation dynamics and the theory of adaptive dynamics. The set of evolutionarily possible dispersal functions (i.e., emigration rates as a function of the local population density) is derived mechanistically from an underlying resource-consumer model. The local resource dynamics is of a flow-culture type and consumers leave a local population with a constant probability per unit of time \(\kappa \) when searching for resources but not when handling resources (i.e., eating and digesting). The time an individual spends searching (as opposed to handling) depends on the local resource density, which in turn depends on the local consumer density, and so the average per capita emigration rate depends on the local consumer density as well.
The derived emigration rates are sigmoid functions of the local consumer population density. The parameters of the local resource-consumer dynamics are subject to evolution. In particular, we find that there exists a unique evolutionarily stable and attracting dispersal rate \(\kappa ^{*}\) for searching consumers. The \(\kappa ^{*}\) increases with local resource productivity and decreases with resource decay rate. The \(\kappa ^{*}\) also increases with the survival probability during dispersal, but as a function of the catastrophe rate it reaches a maximum before dropping off to zero again.

MSC:

92D15 Problems related to evolution
92D40 Ecology
37N25 Dynamical systems in biology
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Bengtsson, G.; Hedlund, K.; Rundgren, S., Food- and density-dependent dispersal: evidence from a soil collembolan, J. Anim. Ecol., 63, 513 (1994)
[2] Fonseca, D. M.; Hart, D. D., Density-dependent dispersal of black fly neonates is mediated by flow, Oikos, 75, 49 (1996)
[3] Aars, J.; Ims, R. A., Population dynamic and genetic consequences of spatial density-dependent dispersal in patchy populations, Am. Nat., 155, 252 (2000)
[4] Albrectsen, B.; Nachman, G., Female-biased density-dependent dispersal of a tephritid fly in a fragmented habitat and its implication for population regulation, Oikos, 94, 263 (2001)
[5] Le Galliard, J.-F.; Ferriere, R.; Clobert, J., Mother-offspring interactions affect natal dispersal in a lizard, Proc. R. Soc. Lond. B, 270, 1163 (2003)
[6] Gyllenberg, M.; Hanski, I., Single-species metapopulation dynamics: a structured model, Theor. Popul. Biol., 42, 35 (1992) · Zbl 0758.92011
[7] Diekmann, O.; Getto, Ph.; Gyllenberg, M., Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars, SIAM J. Math. Anal., 39, 1023 (2007) · Zbl 1149.39021
[8] O. Diekmann, M. Gyllenberg, Abstract delay equations inspired by population dynamics, in: H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (Eds.), Birkhäuser, 2008, pp. 187-200.; O. Diekmann, M. Gyllenberg, Abstract delay equations inspired by population dynamics, in: H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (Eds.), Birkhäuser, 2008, pp. 187-200. · Zbl 1167.47058
[9] Metz, J. A.J.; Nisbet, R. M.; Geritz, S. A.H., How should we define’fitness’ for general ecological scenarios?, Trends Ecol. Evol., 7, 198 (1992)
[10] Metz, J. A.J.; Geritz, S. A.H.; Meszéna, G.; Jacobs, F. J.A.; Van Heerwaarden, J. S., Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction (1996), (van Strien, S. J.; Verduyn Lunel, S. M., Stochastic and Spatial Structures of Dynamical Systems (1996), Amsterdam: Amsterdam The Netherlands, North-Holland), 183 · Zbl 0972.92024
[11] Dieckmann, U.; Law, R., The dynamical theory of coevolution: a derivation from stochastic ecological processes, J. Math. Biol., 34, 579 (1996) · Zbl 0845.92013
[12] Geritz, S. A.H.; Metz, J. A.J.; Kisdi, É.; Meszéna, G., Dynamics of adaptation and evolutionary branching, Phys. Rev. Lett., 78, 2024 (1997)
[13] Geritz, S. A.H.; Kisdi, É.; Meszéna, G.; Metz, J. A.J., Evolutionarily singular strategies and adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12, 35 (1998)
[14] Metz, J. A.J.; Gyllenberg, M., How should we define fitness in structured metapopulation models? Including an application to the calculation of evolutionarily stable dispersal strategies, Proc. Royal Soc. Lond. B, 268, 499 (2001)
[15] Gyllenberg, M.; Metz, J. A.J., On fitness in structured metapopulations, J. Math. Biol., 43, 545 (2001) · Zbl 0995.92034
[16] Jánosi, I.; Scheuring, I., On the evolution of density dependent dispersal in a spatially structured population model, J. Theor. Biol., 187, 397 (1997) · Zbl 0926.92025
[17] Poethke, H. J.; Hovestadt, T., Evolution of density- and patch-size-dependent dispersal rates, Proc. R. Soc. Lond. B, 269, 637 (2002)
[18] Kun, Á.; Scheuring, I., The evolution of density-dependent dispersal in a noisy spatial population model, Oikos, 115, 308 (2006)
[19] Verhulst, F., Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics (2005), Springer · Zbl 1148.35006
[20] Hoppensteadt, F. C., Singular perturbations on the infinite interval, Trans. Am. Math. Soc., 123, 521 (1966) · Zbl 0151.12502
[21] Huang, Y.; Diekmann, O., Predator migration in response to prey density: what are the consequences?, J. Math. Biol., 43, 561 (2001) · Zbl 0995.92044
[22] J.A.J. Metz, O. Diekmann, The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, vol. 68, Springer-Verlag, 1986.; J.A.J. Metz, O. Diekmann, The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, vol. 68, Springer-Verlag, 1986. · Zbl 0614.92014
[23] Parvinen, K.; Dieckmann, U.; Gyllenberg, M.; Metz, J. A.J., Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity, J. Evol. Biol., 16, 143 (2003)
[24] Gyllenberg, M.; Parvinen, K.; Dieckmann, U., Evolutionary suicide and evolution of dispersal in structured metapopulations, J. Math. Biol., 45, 79 (2002) · Zbl 1014.92025
[25] Travis, J. M.J.; French, D. R., Dispersal functions and spatial models: expending our dispersal toolbox, Ecol. Lett., 3, 163 (2000)
[26] Gyllenberg, M.; Preoteasa, D.; Yan, P., Ecology and evolution of symbiosis in metapopulations, J. Biol. Dyn., 3, 39 (2009) · Zbl 1155.92040
[27] Parvinen, K., Evolutionary branching of dispersal strategies in structured metapopulations, J. Math. Biol., 45, 106 (2002) · Zbl 1012.92030
[28] Maynard Smith, J., Evolution and the Theory of Games (1982), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0526.90102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.