×

Spinor gravity and diffeomorphism invariance on the lattice. (English) Zbl 1263.83021

Calcagni, Gianluca (ed.) et al., Quantum gravity and quantum cosmology. Papers based on the presentations at the 6th Aegean school, Chora, Naxos Island, Greece, September 12–17, 2011. Berlin: Springer (ISBN 978-3-642-33035-3/pbk; 978-3-642-33036-0/ebook). Lecture Notes in Physics 863, 67-92 (2013).
Summary: The key ingredient for lattice regularized quantum gravity is diffeomorphism symmetry. We formulate a lattice functional integral for quantum gravity in terms of fermions. This allows for a diffeomorphism invariant functional measure and avoids problems of boundedness of the action. We discuss the concept of lattice diffeomorphism invariance. This is realized if the action does not depend on the positioning of abstract lattice points on a continuous manifold. Our formulation of lattice spinor gravity also realizes local Lorentz symmetry. Furthermore, the Lorentz transformations are generalized such that the functional integral describes simultaneously euclidean and Minkowski signature. The difference between space and time arises as a dynamical effect due to the expectation value of a collective metric field. The quantum effective action for the metric is diffeomorphism invariant. Realistic gravity can be obtained if this effective action admits a derivative expansion for long wavelengths.
For the entire collection see [Zbl 1254.83004].

MSC:

83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory

References:

[1] C. Wetterich, Phys. Lett. B 704, 612 (2011) · doi:10.1016/j.physletb.2011.09.059
[2] C. Wetterich, arXiv:1110.1539
[3] D. Diakonov, arXiv:1109.0091 [hep-th]
[4] H.W. Hamber, arXiv:0901.0964 [gr-qc]
[5] J. Ambjorn, J. Jurkiewicz, R. Loll, arXiv:1105.5582 [hep-lat]
[6] C. Rovelli, arXiv:1102.3660 [gr-qc]
[7] A. Hebecker, C. Wetterich, Phys. Lett. B 57, 269 (2003) · Zbl 1058.83527 · doi:10.1016/j.physletb.2003.09.010
[8] C. Wetterich, Phys. Rev. D 70, 105004 (2004) · doi:10.1103/PhysRevD.70.105004
[9] C. Wetterich, Phys. Rev. Lett. 94, 011602 (2005) · doi:10.1103/PhysRevLett.94.011602
[10] K. Akama, Y. Chikashige, T. Matsuki, H. Terazawa, Prog. Theor. Phys. 60, 868 (1978) · doi:10.1143/PTP.60.868
[11] K. Akama, Prog. Theor. Phys. 60, 1900 (1978) · Zbl 1098.83556 · doi:10.1143/PTP.60.1900
[12] D. Amati, G. Veneziano, Phys. Lett. B 105, 358 (1981) · doi:10.1016/0370-2693(81)90779-6
[13] G. Denardo, E. Spallucci, Class. Quantum Gravity, 89 (1987) · Zbl 0614.53057 · doi:10.1088/0264-9381/4/1/011
[14] Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961) · doi:10.1103/PhysRev.122.345
[15] C. Wetterich, Nucl. Phys. B 211, 177 (1983) · doi:10.1016/0550-3213(83)90191-8
[16] C. Wetterich, Nucl. Phys. B 852, 174 (2011) · Zbl 1229.81168 · doi:10.1016/j.nuclphysb.2011.06.013
[17] C. Itzykson, Fields on a random lattice, in Progess in Gauge Field Theory, Cargèse (1983) · Zbl 0565.58003
[18] T.D. Lee, in Discrete Mechanics, 1983. Erice School of Subnuclear Physics, vol. 21 (Plenum Press, New York, 1985)
[19] J.B. Hartle, J. Math. Phys. 26, 804 (1985) · doi:10.1063/1.526571
[20] H.W. Hamber, R.M. Williams, Nucl. Phys. B 435, 361 (1995) · doi:10.1016/0550-3213(94)00495-Z
[21] C. Wetterich, Nucl. Phys. B 397, 299 (1993) · doi:10.1016/0550-3213(93)90346-Q
[22] C. Wetterich, Nucl. Phys. B 302, 645 (1988) · doi:10.1016/0550-3213(88)90192-7
[23] C. Wetterich, Nucl. Phys. B 302, 668 (1988) · doi:10.1016/0550-3213(88)90193-9
[24] Y. Fujii, Phys. Rev. D 26, 2580 (1982) · doi:10.1103/PhysRevD.26.2580
[25] S. Weinberg, in General Relativity: An Einstein Centenary Survey, ed. by S.W. Hawking, W. Israel (Cambridge University Press, Cambridge, 1979), p. 790
[26] M. Reuter, Phys. Rev. D 57, 971 (1998) · doi:10.1103/PhysRevD.57.971
[27] A. Codello, R. Percacci, C. Rahmede, Ann. Phys. 324, 414 (2009) · Zbl 1161.83343 · doi:10.1016/j.aop.2008.08.008
[28] C. Wetterich, Phys. Lett. B 301, 90 (1993) · doi:10.1016/0370-2693(93)90726-X
[29] M. Reuter, C. Wetterich, Nucl. Phys. B 417, 181 (1994) · doi:10.1016/0550-3213(94)90543-6
[30] E. Cartan, Ann. Sci. Ec. Norm. Super. 40, 325 (1923) · doi:10.24033/asens.751
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.