×

A multiscale method for highly oscillatory dynamical systems using a Poincaré map type technique. (English) Zbl 1263.65067

Summary: We propose a new heterogeneous multiscale method for computing the effective behavior of a class of highly oscillatory ordinary differential equations (ODEs). Without the need for identifying hidden slow variables, the proposed method is constructed based on the following ideas: a nonstandard splitting of the vector field (the right hand side of the ODEs); comparison of the solutions of the split equations; construction of effective paths in the state space whose projection onto the slow subspace has the correct dynamics; and a novel on-the-fly filtering technique for achieving a high-order accuracy. Numerical examples are given.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
65P10 Numerical methods for Hamiltonian systems including symplectic integrators
Full Text: DOI

References:

[1] Ariel, G., Vanden-Eijnden, E.: Accelerated simulation of a heavy particle in a gas of elastic spheres. Multiscale Model. Simul. 7(1), 349–361 (2008) · Zbl 1254.74044 · doi:10.1137/070693229
[2] Ariel, G., Engquist, B., Tsai, R.: Numerical multiscale methods for coupled oscillators. Multiscale Model. Simul. 7(3), 1387–1404 (2008) · Zbl 1175.65078 · doi:10.1137/070707245
[3] Ariel, G., Engquist, B., Kreiss, H.-O., Tsai, R.: Multiscale computations for highly oscillatory problems. In: Multiscale Modeling and Simulation in Science. Lect. Notes Comput. Sci. Eng., vol. 66, pp. 237–287. Springer, Berlin (2009) · Zbl 1159.65332
[4] Ariel, G., Engquist, B., Tsai, R.: A multiscale method for highly oscillatory ordinary differential equations with resonance. Math. Comput. 78, 929–956 (2009) · Zbl 1198.65110
[5] Ariel, G., Engquist, B., Tsai, R.: A reversible multiscale integration method. Commun. Math. Sci. 7(3), 595–610 (2009) · Zbl 1182.65104 · doi:10.4310/CMS.2009.v7.n3.a4
[6] Ariel, G., Engquist, B., Tsai, R.: Oscillatory systems with three separated time scales: analysis and computation. In: Numerical Analysis of Multiscale Computations. Lecture Notes in Computational Science and Engineering, vol. 82, pp. 23–45. Springer, Berlin (2012) · Zbl 1246.65106
[7] Ariel, G., Sanz-Serna, J.M., Tsai, R.: A multiscale technique for finding slow manifolds of stiff mechanical systems. Multiscale Model. Simul. 10(4), 1180–1203 (2012) · Zbl 1332.65100 · doi:10.1137/120861461
[8] Artstein, Z., Kevrekidis, I.G., Slemrod, M., Titi, E.S.: Slow observables of singularly perturbed differential equations. Nonlinearity 20(11), 2463–2481 (2007) · Zbl 1140.34025 · doi:10.1088/0951-7715/20/11/001
[9] Artstein, Z., Linshiz, J., Titi, E.S.: Young measure approach to computing slowly advancing fast oscillations. Multiscale Model. Simul. 6(4), 1085–1097 (2007) · Zbl 1155.65057 · doi:10.1137/070687219
[10] Bambusi, D., Ponno, A.: On metastability in FPU. Commun. Math. Phys. 264(2), 539–561 (2006) · Zbl 1233.37049 · doi:10.1007/s00220-005-1488-1
[11] Bambusi, D., Ponno, A.: Resonance, metastability and blow up in FPU. In: The Fermi-Pasta-Ulam Problem. Lecture Notes in Phys., vol. 728, pp. 191–205. Springer, Berlin (2008) · Zbl 1151.82303
[12] Bond, S.D., Leimkuhler, B.J.: Molecular dynamics and the accuracy of numerically computed averages. Acta Numer. 16, 1–65 (2007) · Zbl 1131.82019 · doi:10.1017/S0962492906280012
[13] Chu, J., Engquist, B., Prodanovic, M., Tsai, R.: A multiscale method coupling network and continuum models in porous media I–Single phase flow. Multiscale Model Simul. 10(2), 515–549 (2012) · Zbl 1428.76115 · doi:10.1137/110836201
[14] Chu, J., Engquist, B., Prodanovic, M., Tsai, R.: A multiscale method coupling network and continuum models in porous media II–Single and two phase flow. In: Advances in Applied Mathematics, Modeling, and Computational Science. Fields Institute Communications, vol. 66, pp. 161–185 (2013)
[15] Cohen, D., Jahnke, T., Lorenz, K., Lubich, C.: Numerical integrators for highly oscillatory Hamiltonian systems: a review. In: Analysis, Modeling and Simulation of Multiscale Problems, pp. 553–576. Springer, Berlin (2006) · Zbl 1367.65191
[16] Condon, M., Deaño, A., Iserles, A.: On second-order differential equations with highly oscillatory forcing terms. Proc. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci. 466(2118), 1809–1828 (2010) · Zbl 1194.34019 · doi:10.1098/rspa.2009.0481
[17] Deuflhard, P.: A study of extrapolation methods based on multistep schemes without parasitic solutions. Z. Angew. Math. Phys. 30(2), 177–189 (1979) · Zbl 0406.70012 · doi:10.1007/BF01601932
[18] E, W.: Analysis of the heterogeneous multiscale method for ordinary differential equations. Commun. Math. Sci. 1(3), 423–436 (2003) · Zbl 1088.65552 · doi:10.4310/CMS.2003.v1.n3.a3
[19] E, W., Engquist, B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003) · Zbl 1093.35012 · doi:10.4310/CMS.2003.v1.n1.a8
[20] E, W., Vanden-Eijnden, E.: Numerical techniques for multiscale dynamical systems with stochastic effects. Commun. Math. Sci. 1(2), 385–391 (2003) · Zbl 1088.60060 · doi:10.4310/CMS.2003.v1.n2.a11
[21] E, W., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2(3), 367–450 (2007) · Zbl 1164.65496
[22] Engquist, B., Tsai, Y.-H.: Heterogeneous multiscale methods for stiff ordinary differential equations. Math. Comput. 74(252), 1707–1742 (2005) · Zbl 1081.65075 · doi:10.1090/S0025-5718-05-01745-X
[23] Engquist, B., Holst, H., Runborg, O.: Multi-scale methods for wave propagation in heterogeneous media over long time. In: Engquist, B., Runborg, O., Tsai, R. (eds.) Numerical Analysis of Multiscale Computations. Lect. Notes Comput. Sci. Eng., vol. 82. Springer, Berlin (2011) · Zbl 1281.65110
[24] Fatkullin, I., Vanden-Eijnden, E.: A computational strategy for multiscale chaotic systems with applications to Lorenz 96 model. J. Comput. Phys. 200, 605–638 (2004) · Zbl 1058.65065 · doi:10.1016/j.jcp.2004.04.013
[25] García-Archilla, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20(3), 930–963 (1999) · Zbl 0927.65143 · doi:10.1137/S1064827596313851
[26] Gear, C.W., Kevrekidis, I.G.: Projective methods for stiff differential equations: problems with gaps in their eigenvalue spectrum. SIAM J. Sci. Comput. 24(4), 1091–1106 (2003). (electronic) · Zbl 1034.65056 · doi:10.1137/S1064827501388157
[27] Gear, C.W., Kevrekidis, I.G.: Constraint-defined manifolds: a legacy code approach to low-dimensional computation. J. Sci. Comput. 25(1–2), 17–28 (2005) · Zbl 1203.37005
[28] Hairer, E., Lubich, C.: On the energy distribution in Fermi-Pasta-Ulam lattices. Arch. Ration. Mech. Anal. 205(3), 993–1029 (2012) · Zbl 1283.70011 · doi:10.1007/s00205-012-0526-3
[29] Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer Series in Computational Mathematics, vol. 31. Springer, Berlin (2002) · Zbl 0994.65135
[30] Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010) · Zbl 1242.65109 · doi:10.1017/S0962492910000048
[31] Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie-group methods. In: Acta Numerica, 2000. Acta Numer., vol. 9, pp. 215–365. Cambridge Univ. Press, Cambridge (2000) · Zbl 1064.65147
[32] Kevorkian, J., Cole, J.D.: Perturbation Methods in Applied Mathematics. Applied Mathematical Sciences, vol. 34. Springer, New York (1981) · Zbl 0456.34001
[33] Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods. Applied Mathematical Sciences, vol. 114. Springer, New York (1996) · Zbl 0846.34001
[34] Kreiss, H.-O.: Problems with different time scales for ordinary differential equations. SIAM J. Numer. Anal. 16(6), 980–998 (1979) · Zbl 0457.65057 · doi:10.1137/0716072
[35] Kreiss, H.-O.: Problems with different time scales. In: Acta Numerica, 1992, pp. 101–139. Cambridge Univ. Press, Cambridge (1992) · Zbl 0770.65045
[36] Kreiss, H.-O., Lorenz, J.: Manifolds of slow solutions for highly oscillatory problems. Indiana Univ. Math. J. 42(4), 1169–1191 (1993) · Zbl 0792.34054 · doi:10.1512/iumj.1993.42.42054
[37] Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge Monographs on Applied and Computational Mathematics, vol. 14. Cambridge University Press, Cambridge (2004) · Zbl 1069.65139
[38] Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer., 357–514 (2001) · Zbl 1123.37327
[39] Petzold, L.R., Jay, L.O., Yen, J.: Numerical solution of highly oscillatory ordinary differential equations. In: Acta Numerica, 1997. Acta Numer., vol. 6, pp. 437–483. Cambridge Univ. Press, Cambridge (1997) · Zbl 0887.65072
[40] Sanders, J.A., Verhulst, F.: Averaging Methods in Nonlinear Dynamical Systems. Applied Mathematical Sciences, vol. 59. Springer, New York (1985) · Zbl 0586.34040
[41] Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Applied Mathematics and Mathematical Computation, vol. 7. Chapman & Hall, London (1994) · Zbl 0816.65042
[42] Tao, M., Owhadi, H., Marsden, J.E.: Nonintrusive and structure preserving multiscale integration of stiff ODEs, SDEs, and Hamiltonian systems with hidden slow dynamics via flow averaging. Multiscale Model. Simul. 8(4), 1269–1324 (2010) · Zbl 1215.65187 · doi:10.1137/090771648
[43] Vanden-Eijnden, E.: Numerical techniques for multi-scale dynamical systems with stochastic effects. Commun. Math. Sci. 1, 385–391 (2003) · Zbl 1088.60060 · doi:10.4310/CMS.2003.v1.n2.a11
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.