×

Constraint-defined manifolds: a legacy code approach to low-dimensional computation. (English) Zbl 1203.37005

Summary: If the dynamics of an evolutionary differential equation system possess a low-dimensional, attracting, slow manifold, there are many advantages to using this manifold to perform computations for long term dynamics, locating features such as stationary points, limit cycles, or bifurcations. Approximating the slow manifold, however, may be computationally as challenging as the original problem. If the system is defined by a legacy simulation code or a microscopic simulator, it may be impossible to perform the manipulations needed to directly approximate the slow manifold. In this paper we demonstrate that with the knowledge only of a set of “slow” variables that can be used to parameterize the slow manifold, we can conveniently compute, using a legacy simulator, on a nearby manifold. Forward and reverse integration, as well as the location of fixed points are illustrated for a discretization of the Chafee-Infante PDE for parameter values for which an Inertial Manifold is known to exist, and can be used to validate the computational results.

MSC:

37-04 Software, source code, etc. for problems pertaining to dynamical systems and ergodic theory
37L99 Infinite-dimensional dissipative dynamical systems
35K57 Reaction-diffusion equations
37L25 Inertial manifolds and other invariant attracting sets of infinite-dimensional dissipative dynamical systems
37M05 Simulation of dynamical systems
65L20 Stability and convergence of numerical methods for ordinary differential equations

Software:

KELLEY

References:

[1] Constantin, P.; Foias, C.; Nicolaenko, B.; Temam, R., Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations (1998), Boston: Springer, Boston · Zbl 0683.58002
[2] Foias, C.; Jolly, M. S.; Kevrekidis, I. G.; Sell, G. R.; Titi, E. S., On the computation of inertial manifolds, Phys. Lett. A, 131, 433-436 (1988) · doi:10.1016/0375-9601(88)90295-2
[3] Gear, C. W.; Kevrekidis, I. G., Projective methods for stiff differential equations: problems with gaps in their eigenvalue spectrum, SIAM J. Sci. Comp., 24, 4, 1091-1106 (2003) · Zbl 1034.65056 · doi:10.1137/S1064827501388157
[4] Gear, C. W.; Kevrekidis, I. G., Computing in the past with forward integration, Phy. Lett. A, 321, 335-343 (2004) · Zbl 1118.81352 · doi:10.1016/j.physleta.2003.12.041
[5] Gear, C. W., Kaper, T. J., Kevrekidis, I. G., and Zagaris, A. Projecting to a slow manifold: singularity perturbed systems and legacy codes, to appear inSIADS; also physics/0405074 at arxiv.org. · Zbl 1170.34343
[6] Gorban, A. N., and Karlin, I. V. Method of invariant manifolds for chemical kinetics ar-Xiv:cond-mat/0207231. · Zbl 1086.82009
[7] Gorban, A. N., Karlin, I. V., and Zinoviev, Yu. (2003). Constructive methods of invariant manifolds for kinetic problems, IHES Report M/03/50.
[8] Jones, D. A.; Titi, E. S., Approximations of inertial manifolds for dissipative nonlinear equations, J. Diff. Equ., 127, 54-86 (1996) · Zbl 0855.35056 · doi:10.1006/jdeq.1996.0061
[9] Jolly, M. S.; Kevrekidis, I. G.; Titi, E. S., Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations, Physica D, 44, 38-60 (1990) · Zbl 0704.58030 · doi:10.1016/0167-2789(90)90046-R
[10] Kelley, C. T., Iterative Methods for Linear and Nonlinear Equations (1995), Philadelphia: SIAM Publications, Philadelphia · Zbl 0832.65046
[11] Lam, S. H.; Goussis, D. A., The CSP method for simplifying chemical kinetics, Int. J. Chem. Kin., 26, 461-486 (1994) · doi:10.1002/kin.550260408
[12] Maas, U.; Pope, S. B., Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space, Combustion and Flame, 88, 239-264 (1992) · doi:10.1016/0010-2180(92)90034-M
[13] Rico-Martinez, R.; Gear, C. W.; Kevrekidis, I. G., Coarse projective kMC integration: forward/reverse initial and boundary value problems, J. Comp. Phys., 196, 474-489 (2004) · Zbl 1053.65005 · doi:10.1016/j.jcp.2003.11.005
[14] Ryckaert, J. P.; Ciccotti, G.; Berendsen, H., Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of Nalkanes, J. Comp. Phys., 23, 327-341 (1977) · doi:10.1016/0021-9991(77)90098-5
[15] Shroff, G. M.; Keller, H. B., Stabilization of unstable procedures: A recursive projection method, SIAM J. Numer. Anal., 30, 1099-1120 (1993) · Zbl 0789.65037 · doi:10.1137/0730057
[16] Temam, R. (1988).Infinite Dimensional Dynamical Systems in Mechanics and Physics New York. Springer. · Zbl 0662.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.