×

Self-similarity in a general aggregation-fragmentation problem. Application to fitness analysis. (English) Zbl 1259.35151

Summary: We consider the linear growth and fragmentation equation: \[ \frac{\partial}{\partial t}u(x,t) + \frac{\partial}{\partial x}(\tau(x) u) + \beta(x) u = 2\int_x^\infty \beta(y) \kappa(x,y) u(y,t) dy, \] with general coefficients \(\tau\), \(\beta\) and \(\kappa\). Under suitable conditions (see [M. Doumic Jauffret and P. Gabriel, Math. Models Methods Appl. Sci. 20, No. 5, 757–783 (2010; Zbl 1201.35086)]), the first eigenvalue represents the asymptotic growth rate of solutions, also called the fitness or Malthus coefficient in population dynamics. This value is of crucial importance in understanding the long-time behavior of the population. We investigate the dependence of the dominant eigenvalue and the corresponding eigenvector on the transport and fragmentation coefficients. We show how it behaves asymptotically depending on whether transport dominates fragmentation or vice versa. For this purpose we perform a suitable blow-up analysis of the eigenvalue problem in the limit of a small/large growth coefficient (resp. fragmentation coefficient). We exhibit a possible non-monotonic dependence on the parameters, in contrast to what would have been conjectured on the basis of some simple cases.

MSC:

35P20 Asymptotic distributions of eigenvalues in context of PDEs
35R09 Integro-partial differential equations
35B40 Asymptotic behavior of solutions to PDEs
35Q92 PDEs in connection with biology, chemistry and other natural sciences
92D25 Population dynamics (general)

Citations:

Zbl 1201.35086

References:

[1] Doumic Jauffret, M.; Gabriel, P., Eigenelements of a general aggregation-fragmentation model, Math. Models Methods Appl. Sci., 20, 5, 757-783 (2010) · Zbl 1201.35086
[2] Escobedo, M.; Mischler, S., Dust and self-similarity for the Smoluchowski coagulation equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23, 3, 331-362 (2006) · Zbl 1154.82024
[3] Calvez, V.; Lenuzza, N.; Doumic, M.; Deslys, J.-P.; Mouthon, F.; Perthame, B., Prion dynamic with size dependency - strain phenomena, J. Biol. Dyn., 4, 1, 28-42 (2010) · Zbl 1315.92039
[4] Calvez, V.; Lenuzza, N.; Oelz, D.; Deslys, J.-P.; Laurent, P.; Mouthon, F.; Perthame, B., Size distribution dependence of prion aggregates infectivity, Math. Biosci., 1, 88-99 (2009) · Zbl 1161.92033
[5] Bekkal Brikci, F.; Clairambault, J.; Perthame, B., Analysis of a molecular structured population model with possible polynomial growth for the cell division cycle, Math. Comput. Modelling, 47, 7-8, 699-713 (2008) · Zbl 1134.92012
[6] Bekkal Brikci, F.; Clairambault, J.; Ribba, B.; Perthame, B., An age-and-cyclin-structured cell population model for healthy and tumoral tissues, J. Math. Biol., 57, 1, 91-110 (2008) · Zbl 1148.92014
[7] Perthame, B., Transport Equations in Biology, Frontiers in Mathematics (2007), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1185.92006
[8] Banks, H.; Charles, F.; Doumic, M.; Sutton, K.; Thompson, W., Label structured cell proliferation models, Appl. Math. Lett., 23, 12, 1412-1415 (2010) · Zbl 1205.35321
[9] Banks, H.; Sutton, K.; Thompson, W.; Bocharov, G.; Roosec, D.; Schenkeld, T.; Meyerhanse, A., Estimation of cell proliferation dynamics using CFSE data, Bull. Math. Biol., 73, 1, 116-150 (2010) · Zbl 1209.92012
[10] Doumic, M., Analysis of a population model structured by the cells molecular content, Math. Model. Nat. Phenom., 2, 3, 121-152 (2007) · Zbl 1337.92174
[11] Magal, P.; Hinow, P.; Le Foll, F.; Webb, G. F., Analysis of a model for transfer phenomena in biological populations, SIAM J. Appl. Math., 70, 40-62 (2009) · Zbl 1201.34092
[12] Bansaye, V., Proliferating parasites in dividing cells: Kimmelʼs branching model revisited, Ann. Appl. Probab., 18, 3, 967-996 (2008) · Zbl 1142.60054
[13] Banasiak, J.; Lamb, W., Coagulation, fragmentation and growth processes in a size structured population, Discrete Contin. Dynam. Systems Ser. B, 11, 3, 563-585 (2009) · Zbl 1178.35136
[14] Michel, P.; Mischler, S.; Perthame, B., General entropy equations for structured population models and scattering, C. R. Math. Acad. Sci. Paris, 338, 9, 697-702 (2004) · Zbl 1049.35070
[15] Michel, P.; Mischler, S.; Perthame, B., General relative entropy inequality: an illustration on growth models, J. Math. Pures Appl. (9), 84, 9, 1235-1260 (2005) · Zbl 1085.35042
[16] Clairambault, J.; Gaubert, S.; Lepoutre, T., Comparison of Perron and Floquet eigenvalues in age structured cell division cycle models, Math. Model. Nat. Phenom., 4, 3, 183-209 (2009) · Zbl 1177.35052
[17] N. Lenuzza, Modélisation de la réplication des prions: implication de la dépendance en taille des agrégats de PrP et de lʼhétérogénéité des populations cellulaires, Ph.D. thesis, Paris, 2009.; N. Lenuzza, Modélisation de la réplication des prions: implication de la dépendance en taille des agrégats de PrP et de lʼhétérogénéité des populations cellulaires, Ph.D. thesis, Paris, 2009.
[18] Greer, M.; Pujo-Menjouet, L.; Webb, G., A mathematical analysis of the dynamics of prion proliferation, J. Theoret. Biol., 242, 3, 598-606 (2006) · Zbl 1447.92089
[19] Gabriel, P., The shape of the polymerization rate in the prion equation, Math. Comput. Modelling, 53, 7-8, 1451-1456 (2011) · Zbl 1219.35326
[20] Prüss, J.; Pujo-Menjouet, L.; Webb, G.; Zacher, R., Analysis of a model for the dynamics of prion, Discrete Contin. Dynam. Systems Ser. B, 6, 1, 225-235 (2006) · Zbl 1088.92043
[21] Escobedo, M.; Mischler, S.; Rodriguez Ricard, M., On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22, 1, 99-125 (2005) · Zbl 1130.35025
[22] Michel, P., Existence of a solution to the cell division eigenproblem, Math. Models Methods Appl. Sci., 16, 7, suppl., 1125-1153 (2006) · Zbl 1094.92023
[23] Goudon, T., Compactness in \(L^p\) spaces, URL
[24] Michel, P., Optimal proliferation rate in a cell division model, Math. Model. Nat. Phenom., 1, 2, 23-44 (2006) · Zbl 1337.92048
[25] Cáceres, M. J.; Cañizo, J. A.; Mischler, S., Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations, J. Math. Pures Appl., 96, 4, 334-362 (2011) · Zbl 1235.35034
[26] Laurençot, P.; Perthame, B., Exponential decay for the growth-fragmentation/cell-division equation, Commun. Math. Sci., 7, 2, 503-510 (2009) · Zbl 1183.35038
[27] Laurençot, P.; Walker, C., Well-posedness for a model of prion proliferation dynamics, J. Evol. Equ., 7, 2, 241-264 (2007) · Zbl 1121.35024
[28] Collinge, J.; Clarke, A. R., A general model of prion strains and their pathogenicity, Science, 318, 5852, 930-936 (2007)
[29] P. Gabriel, Long-time asymptotics for nonlinear growth-fragmentation equations, Comm. Math. Sci. (2012), in press.; P. Gabriel, Long-time asymptotics for nonlinear growth-fragmentation equations, Comm. Math. Sci. (2012), in press. · Zbl 1277.35041
[30] Perthame, B.; Ryzhik, L., Exponential decay for the fragmentation or cell-division equation, J. Differential Equations, 210, 1, 155-177 (2005) · Zbl 1072.35195
[31] Silveira, J.; Raymond, G.; Hughson, A.; Race, R.; Sim, V.; Hayes, S.; Caughey, B., The most infectious prion protein particles, Nature, 437, 7056, 257-261 (2005)
[32] Engler, H.; Prüss, J.; Webb, G., Analysis of a model for the dynamics of prions II, J. Math. Anal. Appl., 324, 1, 98-117 (2006) · Zbl 1103.92024
[33] Laurent, M., Bistability and the species barrier in prion diseases: stepping across the threshold or not, Biophys. Chem., 72, 1-2, 211-222 (1998)
[34] Clairambault, J.; Gaubert, S.; Perthame, B., An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations, C. R. Math. Acad. Sci. Paris, 345, 10, 549-554 (2007) · Zbl 1141.34326
[35] V. Calvez, P. Gabriel, Optimal control for a discrete aggregation-fragmentation model, in preparation.; V. Calvez, P. Gabriel, Optimal control for a discrete aggregation-fragmentation model, in preparation.
[36] Doumic, M.; Maia, P.; Zubelli, J., On the calibration of a size-structured population model from experimental data, Acta Biotheor., 58, 4, 405-413 (2010)
[37] Perthame, B.; Zubelli, J., On the inverse problem for a size-structured population model, Inverse Problems, 23, 3, 1037-1052 (2007) · Zbl 1118.35072
[38] Doumic, M.; Perthame, B.; Zubelli, J., Numerical solution of an inverse problem in size-structured population dynamics, Inverse Problems, 25, 045008 (2009), (electronic version) · Zbl 1161.92020
[39] Gabriel, P.; Tine, L. M., High-order WENO scheme for polymerization-type equations, ESAIM Proc., 30, 54-70 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.