×

A mathematical analysis of the dynamics of prion proliferation. (English) Zbl 1447.92089

Summary: How do the normal prion protein \(( \operatorname{PrP}^{\operatorname{C}})\) and infectious prion protein \(( \operatorname{PrP}^{\operatorname{Sc}})\) populations interact in an infected host? To answer this question, we analyse the behavior of the two populations by studying a system of differential equations. The system is constructed under the assumption that \(\operatorname{PrP}^{\operatorname{Sc}}\) proliferates using the mechanism of nucleated polymerization. We prove that with parameter input consistent with experimentally determined values, we obtain the persistence of \(\operatorname{PrP}^{\operatorname{Sc}}\). We also prove local stability results for the disease steady state, and a global stability result for the disease free steady state. Finally, we give numerical simulations, which are confirmed by experimental data.

MSC:

92C32 Pathology, pathophysiology
92C40 Biochemistry, molecular biology
34D20 Stability of solutions to ordinary differential equations
34D23 Global stability of solutions to ordinary differential equations

References:

[1] Aguzzi, A.; Polymenidou, M., Mammalian prion biology: one century of evolving concepts, Cell, 116, 313-327 (2004)
[2] Borchelt, D. R.; Scott, M.; Taraboulos, A.; Stahl, N.; Prusiner, S. B., Scrapie and cellular prion proteins differ in their kinetics of synthesis and topology in cultured cells, J. Cell Biol., 110, 743-752 (1990)
[3] Bounhar, Y.; Zhang, Y.; Goodyer, C.; LeBlanc, A., Prion protein protects human neurons against bax-mediated apoptosis, J. Biol. Chem., 276, 39145-39149 (2001)
[4] Brandner, S.; Isenmann, S.; Raeber, A.; Fischer, M.; Sailer, A.; Kobayashi, Y.; Marino, S.; Weissmann, C.; Aguzzi, A., Normal host prion protein necessary for scrapie-induced neurotoxicity, Nature, 379, 339-343 (1996)
[5] Brown, D.; Nicholas, R.; Canevari, L., Lack of prion protein expression results in a neuronal phenotype sensitive to stress, J. Neurosci. Res., 67, 211-224 (2002)
[6] Caughey, B.; Race, R. E.; Ernst, D.; Buchmeier, M. J.; Chesebro, B., Prion protein biosynthesis in scrapie-infected and uninfected neuroblastoma cells, J. Virol., 63, 175-181 (1989)
[7] Chesebro, B.; Trifilo, M.; Race, R.; Meade-White, K.; Teng, C.; LaCasse, R.; Raymond, L.; Favara, C.; Baron, G.; Priola, S.; Caughey, B.; Masliah, E.; Oldstone, M., Anchorless prion protein results in infectious amyloid disease without clinical scrapie, Science, 308, 1435-1439 (2005)
[8] Chiesa, R.; Piccardo, P.; Dossena, S.; Nowoslawski, L.; Roth, K. A.; Ghetti, B.; Harris, D. A., Bax deletion prevents neuronal loss but not neurological symptoms in a transgenic model of inherited prion disease, Proc. Natl Acad. Sci. USA, 102, 238-243 (2005)
[9] Cohen, F. E.; Huang, Z.; Fletterick, R. J.; Baldwin, M.; Prusiner, S. B., Structural clues to prion replication, Science, 264, 530-531 (1994)
[10] Collins, S.; Douglass, A.; Vale, R.; Weissman, J., Mechanism of prion propagation: amyloid growth occurs by monomer addition, PLOSBio, 2, 1582-1590 (2004)
[11] Eigen, M., Prionics or the kinetic basis of prion diseases, Biophys. Chem., 63, 11-18 (1996)
[12] Engler, H., Prüss, J., Webb, G.F., 2006. Analysis of a model for the dynamics of prions II, in press. · Zbl 1103.92024
[13] Ferreira, A. S.; da Silva, M. A.; Cressoni, J. C., Stochastic modeling approach to the incubation time of prionic diseases, Phys. Rev. Lett., 90, 198101-198104 (2003)
[14] Govaerts, C.; Wille, H.; Prusiner, S. B.; Cohen, F. E., Evidence for assembly of prions with left-handed \(\beta \)-helices into trimers, Proc. Natl Acad. Sci., 101, 8342-8347 (2004)
[15] Greer, M.L., 2002. A population model of prion dynamics. Ph.D. Thesis, Vanderbilt University.
[16] Griffith, J. S., Nature of the scrapie agent, Nature, 215, 1043-1044 (1967)
[17] Hale, J., Ordinary Differential Equations (1969), Wiley-Interscience: Wiley-Interscience New-York · Zbl 0186.40901
[18] Harper, J. D.; Lansbury, P. T., Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins, Ann. Rev. Biochem., 66, 385-407 (1997)
[19] Horwich, A. L.; Weissman, J. S., Deadly conformations: protein misfolding in prion disease, Cell, 89, 499-510 (1997)
[20] Huang, Z. W.; Gabriel, J. M.; Baldwin, M. A.; Fletterick, R. J.; Prusiner, S. B.; ECohen, F., Proposed three-dimensional structure for the cellular prion protein, Proc. Natl Acad. Sci. USA, 47, 71-79 (1984)
[21] Jarrett, J. T.; Lansbury, P. T., Seeding “one-dimensional crystallization” of smyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie?, Cell, 73, 1055-1058 (1993)
[22] Kim, B. H.; Lee, H. G.; Choi, J. K.; Kim, J. I.; Choi, E. K.; Carp, R. I.; Kim, Y. S., The cellular prion protein (prpc) prevents apoptotic neuronal cell death and mitochondrial dysfunction induced by serum deprivation, Mol. Brain Res., 124, 40-50 (2004)
[23] Kulkarni, R. V.; Slepoy, A.; Singh, R. R.P.; Cox, D. L.; Pázmándi, F., Theoretical modeling of prion disease incubation, Biophys. J., 85, 707-718 (2003)
[24] Lansbury, P.; Caughey, B., The chemistry of scrapie infection: implication of the “ice 9” metaphor, Chem. Biol., 2, 1-5 (1981)
[25] Laurent, M., Autocatalytic processes in cooperative mechanisms of prion diseases, FEBS Lett., 407, 1-6 (1997)
[26] Li, A.; Harris, D. A., Mammalian prion protein suppresses bax-induced cell death in yeast, J. Biol. Chem., 280, 17430-17434 (2005)
[27] Martin, R. H., Nonlinear Operators and Differential Equations in Banach Spaces (1976), Wiley Interscience Series of Texts, Monographs & Tracts: Wiley Interscience Series of Texts, Monographs & Tracts New York · Zbl 0333.47023
[28] Masel, J.; Jansen, V. A.A.; Nowak, M. S., Quantifying the kinetic parameters of prion replication, Biophys. Chem., 77, 139-152 (1999)
[29] Masel, J.; Genoud, N.; Aguzzi, A., Efficient inhibition of prion replication by prp-\( \operatorname{fc}_2\) suggests that the prion is a \(\operatorname{prp}^{\operatorname{Sc}}\) oligomer, J. Mol. Biol., 345, 1243-1251 (2005)
[30] Mobley, D. L.; Cox, D. L.; Singh, R. R.; Kulkarni, R. V.; Slepoy, A., Simulations of oligomeric intermediates in prion diseases, Biophys. J., 85, 2213-2223 (2003)
[31] Nowak, M. A.; Krakauer, D. C.; Klug, A.; May, R. M., Prion infection dynamics, Integr. Biol., 1, 3-15 (1998)
[32] Oesch, B.; Westaway, D.; Walchli, M.; McKinley, M. P.; Kent, S. B.H.; Aebersold, R.; Barry, R. A.; Tempst, P.; Teplow, D. B.; Hood, L. E.; Prusiner, S. B.; Weissmann, C., A cellular gene encodes scrapie prp 27-30 protein, Cell, 40, 735-746 (1985)
[33] Pan, K. M.; Baldwin, M.; Nguyen, J.; Gasset, M.; Serban, A.; Groth, D.; IlMelhorn, S.; Huang, Z.; Fletterick, R. J.; Cohen, F. E.; Prusiner, S. B., Conversion of \(\alpha \)-helices into \(\beta \)-sheets features in the formation of the scrapie prion proteins, Proc. Natl Acad. Sci. USA, 90, 10962-10966 (1993)
[34] Pöschel, N.; Brilliantov, V.; Frommel, C., Kinetics of prion growth, Biophys. J., 85, 3460-3474 (2003)
[35] Prusiner, S. B., Novel proteinaceous infectious particles cause scrapie, Science, 216, 136-144 (1982)
[36] Prusiner, S. B., Prions, Sci. Am., 4, 50-59 (1986)
[37] Prusiner, S. B., Molecular biology of prion diseases, Science, 252, 1515-1522 (1991)
[38] Prusiner, S. B., Prions, Proc. Natl Acad. Sci. USA, 95, 13363-13383 (1998)
[39] Prusiner, S. B.; McKinley, M. P.; Groth, D. F.; Bowman, K. A.; Mock, N. I.; Cochran, S. P.; Masiarz, F. R., Scrapie agent contains a hydrophobic protein, Proc. Natl Acad. Sci. USA, 78, 6675-6679 (1981)
[40] Prusiner, S. B.; Groth, D. F.; Bolton, D. C.; Kent, S. B.; Hood, L. E., Purification and structural studies of a major scrapie prion protein, Cell, 38, 127-134 (1984)
[41] Prüss, J.; Pujo-Menjouet, L.; Webb, G. F.; Zacher, R., Analysis of a model for the dynamics of prions, Discrete Control Dyn. Syst. Ser. B, 6, 1, 215-225 (2006) · Zbl 1088.92043
[42] Roucou, X.; Guo, Q.; Zhang, Y.; Goodyer, C. G.; Leblanc, A., Cytosolic prion protein is not toxic and protects against bax-mediated cell death in human primary neurons, J. Biol. Chem., 278, 40877-40881 (2003)
[43] Roucou, X.; Gains, M.; Leblanc, A. C., Neuroprotective functions of prion protein, J. Neuroscience Res., 75, 153-161 (2004)
[44] Rubenstein, R.; Merz, P. A.; Kascsak, R. J.; Scalici, C. L.; Papini, M. C.; Carp, R. I.; Kimberlin, R. H., Scrapie-infected spleens: analysis of infectivity, scrapie-associated fibrils, and protease-resistant proteins, J. Infect. Dis., 164, 29-35 (1991)
[45] Scheibel, T.; Kowal, A. S.; Bloom, J. D.; Lindquist, S. L., Bidirectional amyloid fiber growth for a yeast prion determinant, Curr. Biol., 11, 366-369 (2001)
[46] Slepoy, A.; Kulkarni, R. V.; Singh, R. R.P.; Pázmándi, F.; Cox, D. L., On the statistical mechanics of prion proteins, Phys. Rev. Lett., 87, 8101-8104 (2001)
[47] Wille, H.; Michelitsch, M. D.; Guenebaut, V.; Supattapone, S.; Serban, A.; Cohen, F. E.; Agard, D. A.; Prusiner, S. B., Structural studies of the scrapie prion protein by electron crystallography, Proc. Natl Acad. Sci. USA, 99, 3563-3568 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.