×

Dual polar graphs, the quantum algebra \(U_q(\mathfrak{sl}_{2})\), and Leonard systems of dual \(q\)-Krawtchouk type. (English) Zbl 1257.05184

Summary: In this paper we consider how the following three objects are related:
(i)
the dual polar graphs;
(ii)
the quantum algebra \(U_{q}(\mathfrak{sl}_{2})\);
(iii)
the Leonard systems of dual \(q\)-Krawtchouk type.
For convenience we first describe how (ii) and (iii) are related. For a given Leonard system of dual \(q\)-Krawtchouk type, we obtain two \(U_{q}({\mathfrak{sl}}_{2})\)-module structures on its underlying vector space.
We now describe how (i) and (iii) are related. Let \(\Gamma \) denote a dual polar graph. Fix a vertex \(x\) of \(\Gamma\) and let \(T=T(x)\) denote the corresponding subconstituent algebra. By definition \(T\) is generated by the adjacency matrix \(A\) of \(\Gamma \) and a certain diagonal matrix \(A^* =A^*(x)\) called the dual adjacency matrix that corresponds to \(x\). By construction the algebra \(T\) is semisimple. We show that for each irreducible \(T\)-module \(W\) the restrictions of \(A\) and \(A^*\) to \(W\) induce a Leonard system of dual \(q\)-Krawtchouk type.
We now describe how (i) and (ii) are related. We obtain two \(U_{q}(\mathfrak{sl}_{2})\)-module structures on the standard module of \(\Gamma\). We describe how these two \(U_{q}(\mathfrak{sl}_{2})\)-module structures are related. Each of these \(U_{q}(\mathfrak{sl}_{2})\)-module structures induces a \(\mathbb{C}\)-algebra homomorphism \(U_{q}(\mathfrak{sl}_{2}) \to T\). We show that in each case \(T\) is generated by the image together with the center of \(T\). Using the combinatorics of \(\Gamma\) we obtain a generating set \(L,F,R,K\) of \(T\) along with some attractive relations satisfied by these generators.

MSC:

05E30 Association schemes, strongly regular graphs
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
17B37 Quantum groups (quantized enveloping algebras) and related deformations

References:

[1] Bannai, E.; Ito, T., Algebraic Combinatorics I: Association Schemes (1984), Benjamin/Cummings: Benjamin/Cummings London · Zbl 0555.05019
[2] Biggs, N., Algebraic Graph Theory (1993), Cambridge University Press: Cambridge University Press Cambridge
[3] Brouwer, A. E.; Cohen, A. M.; Neumaier, A., Distance-Regular Graphs (1989), Springer-Verlag: Springer-Verlag Berlin · Zbl 0747.05073
[4] Brouwer, A. E.; Wilbrink, H. A., The structure of near polygons with quads, Geommet. Ded., 14, 145-176 (1983) · Zbl 0521.51013
[5] Cameron, P. J., Projective and Polar Spaces (1992), QWM Math Notes: QWM Math Notes London
[6] Cerzo, D., Structure of thin irreducible modules of a Q-polynomial distance-regular graph, Linear Algebra Appl., 433, 8-10, 1573-1613 (2010), arXiv:1003.5368 · Zbl 1226.05265
[7] Curtis, C.; Reiner, I., Representation Theory of Finite Groups and Associative Algebras (1962), Interscience: Interscience New York · Zbl 0131.25601
[8] Go, J. T.; Terwilliger, P., Tight distance-regular graphs and the subconstituent algebra, Eur. J. Combin., 23, 793-816 (2002) · Zbl 1014.05070
[9] Godsil, C. D., Algebraic Combinatorics (1993), Chapman and Hall, Inc.,: Chapman and Hall, Inc., New York · Zbl 0814.05075
[11] Ito, T.; Terwilliger, P., Distance-regular graphs and the \(q\)-tetrahedron algebra, Eur. J. Combin., 30, 3, 682-697 (2009), arXiv:math.CO/0608694 · Zbl 1193.17008
[12] Ito, T.; Terwilliger, P., \(q\)-Inverting pairs of linear transformations and the \(q\)-tetrahedron algebra, Linear Algebra Appl., 426, 2-3, 516-532 (2007), arXiv:math.RT/0606237 · Zbl 1146.17009
[13] Ito, T.; Terwilliger, P.; Weng, C. W., The quantum algebra \(U_q(sl_2)\) and its equitable presentation, J. Algebra, 298, 284-301 (2006), arXiv:math.QA/0507477 · Zbl 1090.17004
[14] Jantzen, J. C., Lectures on quantum groups, Graduate Studies in Mathematics, vol. 6 (1996), Amer. Math. Soc.: Amer. Math. Soc. Providence RI · Zbl 0842.17012
[15] Kassel, C., Quantum Groups (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0808.17003
[16] Kim, Joohyung, Some matrices associated with the split decomposition for a \(Q\)-polynomial distance-regular graph, Eur. J. Combin., 30, 1, 96-113 (2009) · Zbl 1213.05169
[17] Pascasio, A. A., On the multiplicities of the primitive idempotents of a \(Q\)-polynomial distance-regular graph, Eur. J. Combin., 23, 1073-1078 (2002) · Zbl 1017.05107
[18] Terwilliger, P., Leonard pairs from 24 points of view, Rocky Mount. J. Math., 32, 2, 827-888 (2002) · Zbl 1040.05030
[19] Terwilliger, P., The subconstituent algebra of an association scheme I, J. Algebr. Combin., 1, 363-388 (1992) · Zbl 0785.05089
[20] Terwilliger, P., The subconstituent algebra of an association scheme III, J. Algebr. Combin., 2, 177-210 (1993) · Zbl 0785.05091
[21] Terwilliger, P., The displacement and split decompositions for a \(Q\)-polynomial distance-regular graph, Graphs Combin., 21, 263-276 (2005), arXiv:math.CO/0306142 · Zbl 1065.05097
[22] Terwilliger, P., Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl., 330, 149-203 (2001), arXiv:math.RA/0406555 · Zbl 0980.05054
[24] Terwilliger, P., Two linear transformations each tridiagonal with respect to an eigenbasis of the other; the TD-D canonical form and the LB-UB canonical form, J. Algebra., 291, 1, 1-45 (2005), arXiv:math.RA/0304077 · Zbl 1079.15005
[25] Terwilliger, P., The universal Askey-Wilson algebra and the equitable presentation of \(U_q(sl_2)\), SIGMA, 7, 099, 26 (2011), arXiv:1107.3544 · Zbl 1244.33016
[26] Terwilliger, P.; Vidunas, R., Leonard pairs and the Askey-Wilson relations, J. Alegbra Appl., 3, 411-426 (2004), arXiv:math.QA/030535 · Zbl 1062.33018
[27] Weng, C., Weak-geodetically closed subgraphs in distance-regular graphs, Graphs. Combin., 14, 3, 275-304 (1998) · Zbl 0906.05079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.