×

The Sato-Tate distribution and the values of Fourier coefficients of modular newforms. (English) Zbl 1256.11032

Let \(f=\sum_{n>0}a_nq^n\) be a normalized newform of level \(N\), weight \(k\) with nebentypus \(\varepsilon\) and without CM. The paper deals with the relation between the distribution of coefficients of \(f\) and the Sato-Tate measure. Starting with the formula \[ \begin{split} \lim_{x\to +\infty} \frac{\# \left\{ p\in\mathcal{P}(x): p\equiv m\pmod M , \frac{a_p}{2\zeta p^{(k-1)/2}}\leq a\right\} }{\# \left\{ p\in\mathcal{P}(x)\,:\,p\equiv m\pmod M \right\} }\\ = \frac{2}{\pi} \int_{-1}^a \sqrt{1-x^2}\,dx\quad a\in[-1,1] \end{split} \] (where \(\zeta\) is a root of unity, \(\varepsilon(m)=\zeta^2\,\), \(M\) is a multiple of the conductor of \(\varepsilon\) and \(\mathcal{P}(x)\) is the set of primes \(p\leq x\) such that \(p\nmid N\)), the authors present numerical evidence for a series of conjectures aimed at the generalization of the above result. In particular they consider a set of algebraically independent newforms \(f_1,\dots,f_d\) (i.e., there is no Dirichlet character \(\chi\) such that \(f_i=f_j\otimes \chi\)) and relate the distribution of their Fourier coefficients belonging to some fixed arithmetic progressions to the Sato-Tate measure \(\left(\frac{2}{\pi}\right)^d \int_{-1}^{a_1}\cdots \int_{-1}^{a_d} \sqrt{1-x_1^2}\cdots \sqrt{1-x_d^2}\,dx_1\cdots dx_d\,\). Special attention is dedicated to the case \(d=1\) for newforms with rational coefficients (where the generalization only refers to the fact that they are imposing congruence conditions on the coefficients): in that case the authors show that the conjecture (with some additional conditions) would yield a proof of the Lang-Trotter conjecture for the elliptic curve associated to \(f\) and a complete characterization for the set of vanishing Fourier coefficients of \(f\) (for \(k\geq 4\)).

MSC:

11F30 Fourier coefficients of automorphic forms
Full Text: DOI

References:

[1] Akiyama [Akiyama and Tanigawa 99] S., Math. Comp. 68 (227) pp 1201– (1999) · Zbl 0923.11100 · doi:10.1090/S0025-5718-99-01051-0
[2] Askey [Askey 75] R., SIAM (1975)
[3] Balog [Balog and Ono 01] A., J. Number Theory 91 (2) pp 356– (2001) · Zbl 1016.11053 · doi:10.1006/jnth.2001.2694
[4] Barnet-Lamb [Barnet-Lamb et al. 11] T., Publ. Res. Inst. Math. Sci. 47 (1) pp 29– (2011) · Zbl 1264.11044 · doi:10.2977/PRIMS/31
[5] Bayer [Bayer and González 97] P., Experiment. Math. 6 (1) pp 57– (1997)
[6] D’Agostino [D’Agostino and Stephens 86] Ralph B., Goodness-of-Fit Techniques, Statistics: Textbooks and Monographs 68 (1986)
[7] González [González and Lario 01] J., Amer. J. Math. 123 (3) pp 475– (2001) · Zbl 1035.14009 · doi:10.1353/ajm.2001.0015
[8] González-Jiménez [González-Jiménez and Guitart 10] E., J. Number Theory 130 (7) pp 1560– (2010) · Zbl 1233.11068 · doi:10.1016/j.jnt.2010.03.003
[9] Lang [Lang and Trotter 76] S., Frobenius Distributions in GL2-Extensions, Lecture Notes in Mathematics 504 (1976)
[10] Lehmer [Lehmer 47] D. H., Duke Math. J. 14 pp 429– (1947) · Zbl 0029.34502 · doi:10.1215/S0012-7094-47-01436-1
[11] Mazur [Mazur 08] B., Bull. Amer. Math. Soc. (N.S.) 45 (2) pp 185– (2008) · Zbl 1229.11001 · doi:10.1090/S0273-0979-08-01207-X
[12] Ribet [Ribet 85] K. A., Glasgow Math. J. 27 pp 185– (1985) · Zbl 0596.10027 · doi:10.1017/S0017089500006170
[13] Serre [Serre 81] J.-P., Inst. Hautes Études Sci. Publ. Math. 54 pp 323– (1981)
[14] Serre [Serre 89] J.-P., Abelian l-adic Representations and Elliptic Curves, second edition, Advanced Book Classics (1989)
[15] Shimura [Shimura 73] G., J. Math. Soc. Japan 25 pp 523– (1973) · Zbl 0266.14017 · doi:10.2969/jmsj/02530523
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.