×

On the modularity level of modular abelian varieties over number fields. (English) Zbl 1233.11068

Summary: Let \(f\) be a weight two newform for \(\varGamma _{1}(N)\) without complex multiplication. In this article we study the conductor of the absolutely simple factors \(B\) of the variety \(A_f\) over certain number fields \(L\). The strategy we follow is to compute the restriction of scalars \(\text{Res}_{L/\mathbb Q}(B)\), and then to apply Milne’s formula for the conductor of the restriction of scalars. In this way we obtain an expression for the local exponents of the conductor \(\mathcal N_L(B)\). Under some hypothesis it is possible to give global formulas relating this conductor with \(N\). For instance, if \(N\) is squarefree, we find that \(\mathcal N_L(B)\) belongs to \(\mathbb Z\) and \(\mathcal N_L(B)\mathfrak f _L^{\dim B}\), where \(\mathfrak f _L\) is the conductor of \(L\).

MSC:

11G18 Arithmetic aspects of modular and Shimura varieties
11G10 Abelian varieties of dimension \(> 1\)

Software:

ecdata; Magma

References:

[1] Atkin, A. O.L.; Li, W. C.W., Twists of newforms and pseudo-eigenvalues of W-operators, Invent. Math., 48, 3, 221-243 (1978) · Zbl 0369.10016
[2] (Birch, B. J.; Kuyk, W., Modular Functions of One Variable IV. Modular Functions of One Variable IV, Lecture Notes in Math., vol. 476 (1975), Springer-Verlag) · Zbl 0315.14014
[3] Breuil, C.; Conrad, B.; Diamond, F.; Taylor, R., On the modularity of elliptic curves over \(Q\): wild 3-adic exercises, J. Amer. Math. Soc., 14, 4, 843-939 (2001) · Zbl 0982.11033
[4] (Cannon, J. J.; Bosma, W., Handbook of Magma Functions (2009))
[5] Carayol, H., Sur les représentations galoisiennes modulo \(ℓ\) attachées aux formes modulaires, Duke Math. J., 59, 3, 785-801 (1989) · Zbl 0703.11027
[6] Cremona, J. E., Algorithms for Modular Elliptic Curves (1992), Cambridge University Press · Zbl 0758.14042
[7] González, J.; Lario, J.-C., \(Q\)-curves and their Manin ideals, Amer. J. Math., 123, 3, 475-503 (2001) · Zbl 1035.14009
[8] Guitart, X.; Quer, J., Modular abelian varieties over number fields, submitted for publication · Zbl 1294.11096
[9] Khare, C.; Wintenberger, J.-P., Serre’s modularity conjecture. I, Invent. Math., 178, 3, 485-504 (2009) · Zbl 1304.11041
[10] Khare, C.; Wintenberger, J.-P., Serre’s modularity conjecture. II, Invent. Math., 178, 3, 505-586 (2009) · Zbl 1304.11042
[11] Milne, J. S., On the arithmetic of abelian varieties, Invent. Math., 17, 177-190 (1972) · Zbl 0249.14012
[12] Pyle, E. E., Abelian varieties over \(Q\) with large endomorphism algebras and their simple components over \(\overline{Q} \), (Modular Curves and Abelian Varieties. Modular Curves and Abelian Varieties, Progr. Math., vol. 224 (2004), Birkhäuser: Birkhäuser Basel), 189-239 · Zbl 1116.11040
[13] Ribet, K., Twists of modular forms and endomorphisms of abelian varieties, Math. Ann., 253, 1, 43-62 (1980) · Zbl 0421.14008
[14] Ribet, K., Abelian varieties over \(Q\) and modular forms, (Algebra and Topology. Algebra and Topology, Taejo˘n, 1992 (1992), Korea Adv. Inst. Sci. Tech.: Korea Adv. Inst. Sci. Tech. Taejo˘n). (Modular Curves and Abelian Varieties. Modular Curves and Abelian Varieties, Progr. Math., vol. 224 (2004), Birkhäuser: Birkhäuser Basel), 241-261, reprinted on: · Zbl 1092.11029
[15] Shimura, G., On the factors of the Jacobian variety of a modular function field, J. Math. Soc. Japan, 25, 3, 523-544 (1973) · Zbl 0266.14017
[16] Washington, L. C., Introduction to Cyclotomic Fields, Grad. Texts in Math., vol. 83 (1997), Springer-Verlag: Springer-Verlag New York · Zbl 0966.11047
[17] Wiles, A., Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2), 141, 3, 443-551 (1995) · Zbl 0823.11029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.