×

High-order sonic boom modeling based on adaptive methods. (English) Zbl 1253.76052

Summary: This paper presents an accurate approach to simulate the sonic boom of supersonic aircrafts. The near-field flow is modeled by the conservative Euler equations and is solved using a vertex-centered finite volume approach on adapted unstructured tetrahedral meshes. A metric-based anisotropic mesh adaptation is considered to control the interpolation error in \(L^p\) norm. Then, from the CFD solution, the pressure distribution under the aircraft is extracted and used to set up the initial conditions of the propagation algorithm in the far-field. The pressure distribution is propagated down to the ground in order to obtain the sonic boom signature using a ray tracing algorithm based upon the Thomas waveform parameter method. In this study, a sonic boom sensitivity analysis is carried out on several aircraft designs (low-drag and low-boom shapes).

MSC:

76J20 Supersonic flows
76M12 Finite volume methods applied to problems in fluid mechanics

Software:

USM3D
Full Text: DOI

References:

[1] Alauzet, F., Size gradation control of anisotropic meshes, Finite Elem. Anal. Des. (2009)
[2] F. Alauzet, A. Loseille, A. Dervieux, P.J. Frey Multi-dimensional continuous metric for mesh adaptation, in: Proceedings of the 15th International Meshing Roundtable, Springer, 2006, pp. 191-214.; F. Alauzet, A. Loseille, A. Dervieux, P.J. Frey Multi-dimensional continuous metric for mesh adaptation, in: Proceedings of the 15th International Meshing Roundtable, Springer, 2006, pp. 191-214.
[3] Batten, P.; Clarke, N.; Lambert, C.; Causon, D. M., On the choice of wavespeeds for the HLLC riemann solver, SIAM J. Sci. Comput., 18, 6, 1553-1570 (1997) · Zbl 0992.65088
[4] H.W. Carlson, Simplified sonic-boom prediction, TP, 1122, Nasa, 1978.; H.W. Carlson, Simplified sonic-boom prediction, TP, 1122, Nasa, 1978.
[5] H.W. Carlson, R.J. Mack, O.A. Morris, A wind-tunnel investigation of the effect of body shape on sonic-boom pressure distributions, TN, D-3106, Nasa, 1965.; H.W. Carlson, R.J. Mack, O.A. Morris, A wind-tunnel investigation of the effect of body shape on sonic-boom pressure distributions, TN, D-3106, Nasa, 1965.
[6] Castro-Díaz, M. J.; Hecht, F.; Mohammadi, B.; Pironneau, O., Anisotropic unstructured mesh adaptation for flow simulations, Int. J. Numer. Meth. Fluids, 25, 475-491 (1997) · Zbl 0902.76057
[7] Clément, Ph., Approximation by finite element functions using local regularization, Revue Française d’Automatique Informatique et Recherche Opérationnelle, R-2, 77-84 (1975) · Zbl 0368.65008
[8] Cournède, P.-H.; Koobus, B.; Dervieux, A., Positivity statements for a Mixed-Element-Volume scheme on fixed and moving grids, Eur. J. Comput. Mech., 15, 7-8, 767-798 (2006) · Zbl 1208.76088
[9] Debiez, C.; Dervieux, A., Mixed-element-volume MUSCL methods with weak viscosity for steady and unsteady flow calculations, Computer and Fluids, 29, 89-118 (2000) · Zbl 0949.76052
[10] C. Dobrzynski, P.J. Frey, Anisotropic Delaunay mesh adaptation for unsteady simulations, in: Proceedings of the 17th International Meshing Roundtable, Springer, 2008, pp. 177-194.; C. Dobrzynski, P.J. Frey, Anisotropic Delaunay mesh adaptation for unsteady simulations, in: Proceedings of the 17th International Meshing Roundtable, Springer, 2008, pp. 177-194.
[11] Frey, P. J.; Alauzet, F., Anisotropic mesh adaptation for CFD computations, Comput. Methods Appl. Mech. Eng., 194, 48-49, 5068-5082 (2005) · Zbl 1092.76054
[12] Frey, P. J.; George, P.-L., Mesh Generation. Mesh Generation, Application to Finite Elements (2008), ISTE Ltd. and John Wiley & Sons · Zbl 1156.65018
[13] George, A. R., Reduction of sonic boom by azimuthal redistribution of overpressure, AIAA Journal, 7, 2, 291-298 (1969)
[14] P.-L. George, Tet meshing: construction, optimization and adaptation, in: Proceedings of the 8th International Meshing Roundtable, South Lake Tao, CA, USA, 1999.; P.-L. George, Tet meshing: construction, optimization and adaptation, in: Proceedings of the 8th International Meshing Roundtable, South Lake Tao, CA, USA, 1999.
[15] Gruau, C.; Coupez, T., 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Comput. Methods Appl. Mech. Eng., 194, 48-49, 4951-4976 (2005) · Zbl 1102.65122
[16] W.D. Hayes, R.C. Haefeli, H.E. Kulsrud. Sonic boom propagation in a stratified atmosphere with computer program, TN. CR-1299, Nasa, 1969.; W.D. Hayes, R.C. Haefeli, H.E. Kulsrud. Sonic boom propagation in a stratified atmosphere with computer program, TN. CR-1299, Nasa, 1969.
[17] N. Héron, F. Coulouvrat, F. Dagrau, G. Rogé, Z. Johan. Hisac midterm overview of sonic boom issues, in: Proceedings of the 19th international congress on acoustics-ICA, Madrid, Spain, 2007.; N. Héron, F. Coulouvrat, F. Dagrau, G. Rogé, Z. Johan. Hisac midterm overview of sonic boom issues, in: Proceedings of the 19th international congress on acoustics-ICA, Madrid, Spain, 2007.
[18] Huang, W., Metric tensors for anisotropic mesh generation, J. Comput. Phys., 204, 2, 633-665 (2005) · Zbl 1067.65140
[19] L.W. Hunton, R.M. Hicks, J.P. Mendoza, Some effects of wing planform on sonic boom, TN. D-7160, Nasa, 1973.; L.W. Hunton, R.M. Hicks, J.P. Mendoza, Some effects of wing planform on sonic boom, TN. D-7160, Nasa, 1973.
[20] ICAO, Manual of the ICAO Standard Atmosphere (extended to 80 kilometres). Doc 7488, third edition, 1993.; ICAO, Manual of the ICAO Standard Atmosphere (extended to 80 kilometres). Doc 7488, third edition, 1993.
[21] Jones, W. T.; Nielsen, E. J.; Park, M. A., Validation of 3d adjoint based error estimation and mesh adaptation for sonic boom reduction, AIAA Paper, 1150-2006 (2006)
[22] Van Leer, B., Towards the ultimate conservative difference scheme I. The quest of monotonicity, Lecture Notes in Physics, 18, 163 (1972) · Zbl 0255.76064
[23] Li, X.; Shephard, M. S.; Beal, M. W., 3D anisotropic mesh adaptation by mesh modification, Comput. Methods Appl. Mech. Eng., 194, 48-49, 4915-4950 (2005) · Zbl 1090.76060
[24] A. Loseille. Adaptation de maillage anisotrope 3D multi-Échelles et ciblée à une fonctionnelle pour la mécanique des fluides, Application à la prédiction haute-fidélité du bang sonique, Ph.D. Thesis, Université Pierre et Marie Curie, Paris VI, Paris, France, 2008, (in French).; A. Loseille. Adaptation de maillage anisotrope 3D multi-Échelles et ciblée à une fonctionnelle pour la mécanique des fluides, Application à la prédiction haute-fidélité du bang sonique, Ph.D. Thesis, Université Pierre et Marie Curie, Paris VI, Paris, France, 2008, (in French).
[25] A. Loseille, F. Alauzet, Continuous mesh model and well-posed continuous interpolation error estimation, RR-6846, INRIA, March 2009.; A. Loseille, F. Alauzet, Continuous mesh model and well-posed continuous interpolation error estimation, RR-6846, INRIA, March 2009. · Zbl 1230.65018
[26] Loseille, A.; Dervieux, A.; Frey, P. J.; Alauzet, F., Achievement of global second-order mesh convergence for discontinuous flows with adapted unstructured meshes, AIAA Paper, 2007-4186 (2007)
[27] Page, J. A.; Plotkin, K. J., An efficient method for incorporating computational fluid dynamics into sonic boom prediction, AIAA Paper, 1991-3275 (1991)
[28] C Pain, C.; Humpleby, A. P.; de Oliveira, C. R.E.; Goddard, A. J.H., Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations, Comput. Methods Appl. Mech. Eng., 190, 3771-3796 (2001) · Zbl 1008.76041
[29] Pederson, Sonic boom technologies and challenges, in: FAA Civil Supersonic Aircraft Workshop, Arlington, VI, USA, 2003.; Pederson, Sonic boom technologies and challenges, in: FAA Civil Supersonic Aircraft Workshop, Arlington, VI, USA, 2003.
[30] K.J. Plotkin, Theoretical basis for the finite difference extrapolation of sonic boom signatures, in: NASA Conference Publication 3335, vol. 1, 1995, pp. 54-67.; K.J. Plotkin, Theoretical basis for the finite difference extrapolation of sonic boom signatures, in: NASA Conference Publication 3335, vol. 1, 1995, pp. 54-67.
[31] K.J. Plotkin, J.A. Page, Extrapolation of sonic boom signatures from CFD solutions, AIAA Paper (2002) 2002-0922.; K.J. Plotkin, J.A. Page, Extrapolation of sonic boom signatures from CFD solutions, AIAA Paper (2002) 2002-0922.
[32] Roe, P., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357-372 (1981) · Zbl 0474.65066
[33] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 439-471 (1988) · Zbl 0653.65072
[34] Spiteri, R. J.; Ruuth, S. J., A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM J. Numer. Anal., 40, 2, 469-491 (2002) · Zbl 1020.65064
[35] Steger, J. L.; Warming, R. F., Flux vector splitting of the inviscid gas dynamic equations with application to finite-difference methods, J. Comput. Phys., 40, 263-293 (1981) · Zbl 0468.76066
[36] Tam, A.; Ait-Ali-Yahia, D.; Robichaud, M. P.; Moore, M.; Kozel, V.; Habashi, W. G., Anisotropic mesh adaptation for 3D flows on structured and unstructured grids, Comput. Methods Appl. Mech. Eng., 189, 1205-1230 (2000) · Zbl 1005.76061
[37] Ch. Thomas, Extrapolation of sonic boom pressure signatures by the waveform parameter method, TN. D-6832, Nasa, 1972.; Ch. Thomas, Extrapolation of sonic boom pressure signatures by the waveform parameter method, TN. D-6832, Nasa, 1972.
[38] K.A. Waithe, Application of USM3D for sonic boom prediction by utilizing a hybrid procedure, AIAA Paper (2008) 2008-129.; K.A. Waithe, Application of USM3D for sonic boom prediction by utilizing a hybrid procedure, AIAA Paper (2008) 2008-129.
[39] M. Wintzer, M. Nemec, M.J. Aftosmis, Adjoint-based adaptive mesh refinement for sonic boom prediction, AIAA Paper (2008) 2008-6593.; M. Wintzer, M. Nemec, M.J. Aftosmis, Adjoint-based adaptive mesh refinement for sonic boom prediction, AIAA Paper (2008) 2008-6593.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.