×

Nonlinear Poisson autoregression. (English) Zbl 1253.62058

Summary: We study statistical properties of a class of nonlinear models for regression analysis of count time series. Under mild conditions, it is shown that a perturbed version of the model is geometrically ergodic and possesses moments of any order. This result turns out to be instrumental on deriving large sample properties of the maximum likelihood estimators of the regression parameters. The theory is illustrated with examples.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62J02 General nonlinear regression
62F12 Asymptotic properties of parametric estimators
65C60 Computational problems in statistics (MSC2010)

Software:

Fahrmeir
Full Text: DOI

References:

[1] Berkes I., Horváth L., Kokoszka P. (2003) GARCH processes: structure and estimation. Bernoulli 9: 201–227 · Zbl 1064.62094 · doi:10.3150/bj/1068128975
[2] Brockwell P.J., Davis R.A. (1991) Time series: data analysis and theory (2nd ed). Springer, New York · Zbl 0709.62080
[3] Brumback B.A., Ryan L.M., Schwartz J.D., Neas L.M., Stark P.C., Burge H.A. (2000) Transitional regression models with application to environmental time series. Journal of the American Statistical Association 85: 16–27 · doi:10.1080/01621459.2000.10473895
[4] Chen C.W.S., Gerlach R., Choy B., Lin C. (2010) Estimation and inference for exponential smooth transition nonlinear volatility models.. Journal of Statistical Planning and Inference 140: 719–733 · Zbl 1177.62032 · doi:10.1016/j.jspi.2009.09.002
[5] Cox D.R. (1981) Statistical analysis of time series: some recent developments. Scandinavian Journal of Statistics 8: 93–115 · Zbl 0468.62079
[6] Davis R.A., Dunsmuir W.T.M., Streett S.B. (2003) Observation-driven models for Poisson counts. Biometrika 90: 777–790 · Zbl 1436.62418 · doi:10.1093/biomet/90.4.777
[7] Doukhan, P., Fokianos, K., Tjøstheim, D. (2012). On weak dependence conditions for Poisson autoregressions Statistics & Probability Letters (to appear). · Zbl 1241.62109
[8] Fahrmeir L., Tutz G. (2001) Multivariate statistical modelling based on generalized linear models (2nd ed). Springer, New York · Zbl 0980.62052
[9] Fan J., Yao Q. (2003) Nonlinear time series. Springer-Verlag, New York · Zbl 1014.62103
[10] Fokianos K., Kedem B. (2004) Partial likelihood inference for time series following generalized linear models. Journal of Time Series Analysis 25: 173–197 · Zbl 1051.62073 · doi:10.1046/j.0143-9782.2003.00344.x
[11] Fokianos K., Tjøstheim D. (2011) Log-linear Poisson autoregression. Journal of Multivariate Analysis 102: 563–578 · Zbl 1207.62165 · doi:10.1016/j.jmva.2010.11.002
[12] Fokianos K., Rahbek A., Tjøstheim D. (2009) Poisson autoregression. Journal of the American Statistical Association 104: 1430–1439 · Zbl 1205.62130 · doi:10.1198/jasa.2009.tm08270
[13] Fokianos, K., Rahbek A., Tjøstheim, D. (2009b). Poisson autoregression (complete version). http://pubs.amstat.org/toc/jasa/104/488 . · Zbl 1205.62130
[14] Francq C., Zakoïan J.-M. (2004) Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes. Bernoulli 10: 605–637 · Zbl 1067.62094 · doi:10.3150/bj/1093265632
[15] Franke, J. (2010). Weak dependence of functional INGARCH processes (unpublished manuscript).
[16] Gao J., King M., Lu Z., Tjøstheim D. (2009) Specification testing in nonlinear and nonstationary time series regression. Annals of Statistics 37: 3893–3928 · Zbl 1191.62148 · doi:10.1214/09-AOS698
[17] Haggan V., Ozaki T. (1981) Modelling nonlinear random vibrations using an amplitude-dependent autoregressive time series model. Biometrika 68: 189–196 · Zbl 0462.62070 · doi:10.1093/biomet/68.1.189
[18] Jensen S.T., Rahbek A. (2007) On the law of large numbers for (geometrically) ergodic Markov chains. Econometric Theory 23: 761–766 · Zbl 1237.60023 · doi:10.1017/S0266466607070326
[19] Jung R.C., Kukuk M., Liesenfeld R. (2006) Time series of count data: modeling, estimation and diagnostics. Computational Statistics & Data Analysis 51: 2350–2364 · Zbl 1157.62492 · doi:10.1016/j.csda.2006.08.001
[20] Kedem B., Fokianos K. (2002) Regression models for time series analysis. Hoboken, NJ, Wiley · Zbl 1011.62089
[21] Li W.K. (1994) Time series models based on generalized linear models: some further results. Biometrics 50: 506–511 · Zbl 0825.62606 · doi:10.2307/2533393
[22] MacDonald, I. L., Zucchini, W. (1997). Hidden Markov and Other Models for Discrete-valued Time Series. London: Chapman & Hall. · Zbl 0868.60036
[23] Meitz M., Saikonnen P. (2008) Ergodicity, mixing and existence of moments of a class of Markov models with applications to GARCH and ACD models. Econometric Theory 24: 1291–1320 · Zbl 1284.62566 · doi:10.1017/S0266466608080511
[24] Meyn S.P., Tweedie R.L. (1993) Markov Chains and stochastic stability. Springer, London · Zbl 0925.60001
[25] Neumann M. (2011) Absolute regularity and ergodicity of Poisson count processes. Bernoulli 17: 1268–1284 · Zbl 1277.60089 · doi:10.3150/10-BEJ313
[26] Teräsvirta T., Tjøstheim T., Granger C.W.J. (2010) Modelling nonlinear economic time series. Oxford University Press, Oxford · Zbl 1305.62010
[27] Tong H. (1990) Nonlinear time series: a dynamical system approach. Oxford University Press, New York · Zbl 0716.62085
[28] Zeger S.L., Qaqish B. (1988) Markov regression models for time series: a quasi-likelihood approach. Biometrics 44: 1019–1031 · Zbl 0715.62166 · doi:10.2307/2531732
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.