×

Transition to spatiotemporal chaos via stationary branching shocks and holes. (English) Zbl 1253.35172

Summary: Spatiotemporal chaos in the complex Ginzburg-Landau equation is known to be associated with a rapid increase in the density of defects, which are isolated points at which the solution amplitude is zero and the phase is undefined. Recently there have been significant advances in understanding the details and interactions of defects and other coherent structures, and in the theory of convective and absolute stability. In this paper, the authors exploit both of these advances to update and clarify the onset of spatiotemporal chaos in the particular case of the complex Ginzburg-Landau equation with zero linear dispersion. They show that very slow increases in the coefficient of nonlinear dispersion cause a shock-hole (defect) pair to develop in the midst of a uniform expanse of plane wave. This is followed by a cascade of splittings of holes into shock-hole-shock triplets, culminating in spatiotemporal chaos at a parameter value that matches the change in absolute stability of the plane wave. The authors demonstrate a close correspondence between the splitting events and theoretical predictions, based on the theory of absolute stability. They also use measures based on power spectra and spatial correlations to show that when the plane wave is convectively unstable, chaos is restricted to localised regions, whereas it is extensive when the plane wave is absolutely unstable.

MSC:

35Q56 Ginzburg-Landau equations
65P20 Numerical chaos
Full Text: DOI

References:

[1] Kuramoto, Y., Chemical Oscillations, Waves, and Turbulence (1984), Springer-Verlag: Springer-Verlag Berlin · Zbl 0558.76051
[2] Aranson, I. S.; Kramer, L., The world of the complex Ginzburg-Landau equation, Rev. Modern Phys., 74, 99-143 (2002) · Zbl 1205.35299
[3] Torcini, A., Order parameter for the transition from phase to amplitude turbulence, Phys. Rev. Lett., 77, 1047-1050 (1996)
[4] Torcini, A.; Frauenkron, H.; Grassberger, P., Studies of phase turbulence in the one-dimensional complex Ginzburg-Landau equation, Phys. Rev. E, 55, 5073-5081 (1997)
[5] Montagne, R.; Hernández-Garcia, E.; Amengual, A.; San Miguel, M., Wound-up phase turbulence in the complex Ginzburg-Landau equation, Phys. Rev. E, 56, 151-167 (1997)
[6] Coullet, P.; Elphick, C.; Gil, L.; Lega, J., Topological defects of wave patterns, Phys. Rev. Lett., 59, 884-887 (1987)
[7] Shraiman, B. I.; Pumir, A.; van Saarloos, W.; Hohenberg, P. C.; Chaté, H.; Holen, M., Spatiotemporal chaos in the one-dimensional complex Ginzburg-Landau equation, Physica D, 57, 241-248 (1992) · Zbl 0759.35045
[8] Howard, M.; van Hecke, M., Hole-defect chaos in the one-dimensional complex Ginzburg-Landau equation, Phys. Rev. E, 68, 026213 (2003)
[9] Coullet, P.; Gil, L.; Lega, J., A form of turbulence associated with defects, Physica D, 37, 91-103 (1989) · Zbl 0687.76057
[10] Coullet, P.; Gil, L.; Lega, J., Defect-mediated turbulence, Phys. Rev. Lett., 62, 1619-1622 (1989)
[11] Zelik, S.; Mielke, A., Multi-pulse evolution, spacetime chaos in dissipative systems, Mem. Amer. Math. Soc., 198, 1-97 (2009) · Zbl 1163.37003
[12] Brusch, L.; Zimmermann, M. G.; Van Hecke, M.; Bar, M.; Torcini, A., Modulated amplitude waves and the transition from phase to defect chaos, Phys. Rev. Lett., 85, 86-89 (2000)
[13] Sandstede, B.; Scheel, A., Defects in oscillatory media: toward a classification, SIAM J. Appl. Dyn. Syst., 3, 1-68 (2004) · Zbl 1059.37062
[14] Sherratt, J. A.; Smith, M. J.; Rademacher, J. D.M., Patterns of sources and sinks in the complex Ginzburg-Landau equation with zero linear dispersion, SIAM J. Appl. Dyn. Syst., 9, 883-918 (2010) · Zbl 1197.35280
[15] Rademacher, J. D.M.; Sandstede, B.; Sheel, A., Computing absolute and essential spectra using continuation, Physica D, 229, 166-183 (2007) · Zbl 1119.65114
[16] Sandstede, B.; Scheel, A., Absolute and convective instabilities of waves on unbounded and large bounded domains, Physica D, 145, 233-277 (2000) · Zbl 0963.34072
[17] Sandstede, B.; Scheel, A., Gluing unstable fronts and backs together can produce stable pulses, Nonlinearity, 13, 1465-1482 (2000) · Zbl 0977.34073
[18] Suslov, S. A., Numerical aspects of searching convective/absolute instability transition, J. Comput. Phys., 212, 188-217 (2006) · Zbl 1161.76547
[19] Smith, M. J.; Rademacher, J. D.M.; Sherratt, J. A., Absolute stability of wavetrains can explain spatiotemporal dynamics in reaction-diffusion systems of lambda-omega type, SIAM J. Appl. Dyn. Syst., 8, 1136-1159 (2009) · Zbl 1183.35032
[20] Sherratt, J. A.; Smith, M. J., Periodic travelling waves in cyclic populations: field studies and reaction-diffusion models, J. Roy. Soc. Interface, 5, 483-505 (2008)
[21] Auchmuty, J. F.G.; Nicolis, G., Bifurcation analysis of reaction-diffusion equations III, chemical oscillations, Bull. Math. Biol., 38, 325-350 (1976) · Zbl 0375.92006
[22] Sherratt, J. A., Periodic travelling wave selection by Dirichlet boundary conditions in oscillatory reaction-diffusion systems, SIAM J. Appl. Math., 63, 1520-1538 (2003) · Zbl 1036.35093
[23] Smith, M. J.; Sherratt, J. A., The effects of unequal diffusion coefficients on periodic travelling waves in oscillatory reaction-diffusion systems, Physica D, 236, 90-103 (2007) · Zbl 1361.34040
[24] Nozaki, K.; Bekki, N., Pattern selection and spatiotemporal transition to chaos in the Ginzburg-Landau equation, Phys. Rev. Lett., 51, 2171-2174 (1983)
[25] Lega, J., Travelling hole solutions of the complex Ginzburg-Landau equation: a review, Physica D, 152, 269-287 (2001) · Zbl 0977.35023
[26] Cross, M. C.; Hohenberg, P. C., Pattern formation outside of equilibrium, Rev. Modern Phys., 65, 851-1113 (1993) · Zbl 1371.37001
[27] Sherratt, J. A.; Smith, M. J.; Rademacher, J. D.M., Locating the transition from periodic oscillations to spatiotemporal chaos in the wake of invasion, Proc. Natl. Acad. Sci. USA, 106, 10890-10895 (2009) · Zbl 1203.37062
[28] Smith, M. J.; Sherratt, J. A., Propagating fronts in the complex Ginzburg-Landau equation generate fixed-width bands of plane waves, Phys. Rev. E, 80, 046209 (2009)
[29] van Hecke, M., Building blocks of spatiotemporal intermittency, Phys. Rev. Lett., 80, 1896-1899 (1998)
[30] Gil, L., Space and time intermittency behaviour of a one-dimensional complex Ginzburg-Landau equation, Nonlinearity, 4, 1213-1222 (1991) · Zbl 0744.35060
[31] Chaté, H., Spatiotemporal intermittency regimes of the one-dimensional complex Ginzburg-Landau equation, Nonlinearity, 7, 185-204 (1994) · Zbl 0839.76036
[32] Nana, L.; Ezersky, A. B.; Mutabazi, I., Secondary structures in a one-dimensional complex Ginzburg-Landau equation with homogeneous boundary conditions, Proc. Roy. Soc. A, 465, 2251-2265 (2009) · Zbl 1186.76652
[33] Deissler, R.; Kaneko, K., Velocity-dependent Lyapunov exponents as a measure of chaos for open-flow systems, Phys. Lett. A, 119, 397-402 (1987)
[34] Lepri, S.; Politi, A.; Torcini, A., Chronotopic Lyapunov analysis II, toward a unified approach, J. Stat. Phys., 88, 31-45 (1997) · Zbl 0920.58030
[35] Giacomelli, G.; Hegger, R.; Politi, A.; Vassalli, M., Convective Lyapunov exponents and propagation of correlations, Phys. Rev. Lett., 85, 3616-3619 (2000)
[36] Rademacher, J. D.M., Geometric relations of absolute and essential spectra of wave trains, SIAM J. Appl. Dyn. Sys., 5, 634-649 (2006) · Zbl 1210.37055
[37] Brevdo, L., Convectively unstable wave packets in the Blasius boundary layer, Z. Angew. Math. Mech., 75, 423-436 (1995) · Zbl 0834.76024
[38] Tobias, S. M.; Proctor, M. R.E.; Knobloch, E., Convective and absolute instabilities of fluid flows in finite geometry, Physica D, 113, 43-72 (1998) · Zbl 0962.76526
[39] Sakaguchi, H., Instability of the hole solution in the complex Ginzburg-Landau equation, Progr. Theoret. Phys., 85, 417-421 (1991)
[40] Chaté, H.; Manneville, P., Stability of the Bekki-Nozaki hole solutions to the one-dimensional complex Ginzburg-Landau equation, Phys. Lett. A, 171, 183-188 (1992)
[41] Sasa, S.; Iwamoto, T., Stability of phase-singular solutions to the one-dimensional complex Ginzburg-Landau equation, Phys. Lett. A, 175, 289-294 (1993)
[42] Popp, S.; Stiller, O.; Aranson, I.; Weber, A.; Kramer, L., Localized hole solutions and spatiotemporal chaos in the 1D complex Ginzburg-Landau equation, Phys. Rev. Lett., 70, 3880-3883 (1993)
[43] Kapitula, T.; Rubin, J., Existence and stability of standing hole solutions to complex Ginzburg-Landau equations, Nonlinearity, 13, 77-112 (2000) · Zbl 1012.35043
[44] Manneville, P., Dissipative Structures and Weak Turbulence (1990), Academic Press: Academic Press Boston · Zbl 0714.76001
[45] Chomaz, J., Transition to turbulence in open flows: what linear and fully nonlinear local and global theories tell us, Eur. J. Mech. B, 23, 385 (2004) · Zbl 1103.76331
[46] Ipsen, M.; Kramer, L.; SÃrensen, P., Amplitude equations for description of chemical reaction-diffusion systems, Phys. Rep., 337, 193-235 (2000) · Zbl 1058.82529
[47] Tsameret, A.; Steinberg, V., Absolute and convective instabilities and noise-sustained structures in the Couette-Taylor system with an axial flow, Phys. Rev. E, 49, 1291-1308 (1994)
[48] Doelman, A., Breaking the hidden symmetry in the Ginzburg-Landau equation, Physica D, 97, 398-428 (1996) · Zbl 1194.35406
[49] van Saarloos, W.; Hohenberg, P. C., Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equations, Physica D, 56, 303-367 (1992) · Zbl 0763.35088
[50] Alvarez, R.; van Hecke, M.; van Saarloos, W., Sources and sinks separating domains of left-and right-traveling waves: experiment versus amplitude equations, Phys. Rev. E, 56, R1306-R1309 (1997)
[51] Gollub, J. P., Order and disorder in fluid motion, Proc. Natl. Acad. Sci. USA, 92, 6705-6711 (1995)
[52] Barkley, D.; Tuckerman, L. S., Computational study of turbulent laminar patterns in Couette flow, Phys. Rev. Lett., 94, 14502 (2005)
[53] Prigent, A.; Grégoire, G.; Chaté, H.; Dauchot, O.; van Saarloos, W., Large-scale finite-wavelength modulation within turbulent shear flows, Phys. Rev. Lett., 89, 14501 (2002)
[54] Chaté, H.; Manneville, P., Transition to turbulence via spatio-temporal intermittency, Phys. Rev. Lett., 58, 112-115 (1987)
[55] Manneville, P., Dissipative structures and weak turbulence, Lect. Notes Phys., 457, 257-272 (1995) · Zbl 0839.76035
[56] Chaté, H.; Manneville, P., Role of defects in the transition turbulence via spatiotemporal intermittency, Physica D, 37, 33-41 (1989)
[57] Willaime, H.; Cardoso, O.; Tabeling, P., Spatiotemporal intermittency in lines of vortices, Phys. Rev. E, 48, 288-295 (1993)
[58] Barkley, D.; Tuckerman, L. S., Mean flow of turbulent-laminar patterns in plane Couette flow, J. Fluid Mech., 576, 109-137 (2007) · Zbl 1124.76018
[59] Moxley, D.; Barkley, D., Distinct large-scale turbulent-laminar states in transitional pipe flow, Proc. Natl. Acad. Sci. USA, 107, 8091-8096 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.