×

On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity. (English) Zbl 1144.82060

Summary: We prove an inequality on the Wasserstein distance with quadratic cost between two solutions of the spatially homogeneous Boltzmann equation without angular cutoff, from which we deduce some uniqueness results. In particular, we obtain a local (in time) well-posedness result in the case of (possibly very) soft potentials. A global well-posedness result is shown for all regularized hard and soft potentials without angular cutoff. Our uniqueness result seems to be the first one applying to a strong angular singularity, except in the special case of Maxwell molecules.
Our proof relies on the ideas of H. Tanaka [Z. Wahrscheinlichkeitstheor. Verw. Geb. 46, 67–105 (1978; Zbl 0389.60079)]. We give a probabilistic interpretation of the Boltzmann equation in terms of a stochastic process. Then we show how to couple two such processes started with two different initial conditions, in such a way that they almost surely remain close to each other.

MSC:

82C40 Kinetic theory of gases in time-dependent statistical mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
82C22 Interacting particle systems in time-dependent statistical mechanics

Citations:

Zbl 0389.60079

References:

[1] Alexandre, R., Desvillettes, L., Villani, C., Wennberg, B.: Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152(4), 327–355 (2000) · Zbl 0968.76076 · doi:10.1007/s002050000083
[2] Bhatt, A., Karandikar, R.: Invariant measures and evolution equations for Markov processes characterized via martingale problems. Ann. Probab. 21(4), 2246–2268 (1993) · Zbl 0790.60062 · doi:10.1214/aop/1176989019
[3] Cercignani, C.: The Boltzmann Equation and its Applications. Applied Mathematical Sciences, vol. 67. Springer, New York (1988) · Zbl 0646.76001
[4] Desvillettes, L.: Boltzmann’s Kernel and the Spatially Homogeneous Boltzmann Equation. Riv. Mat. dell’Univ. Parma 6(4), 1–22 (2001) (special issue) · Zbl 1078.76059
[5] Desvillettes, L., Graham, C., Méléard, S.: Probabilistic interpretation and numerical approximation of a Kac equation without cutoff. Stoch. Process. Appl. 84(1), 115–135 (1999) · Zbl 1009.76081 · doi:10.1016/S0304-4149(99)00056-3
[6] Desvillettes, L., Mouhot, C.: Regularity, stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions. arXiv eprint math.AP/0606307 (2006)
[7] Ethier, S.N., Kurtz, T.G.: Markov Processes, Characterization and Convergence. Wiley, New York (1986) · Zbl 0592.60049
[8] Fontbona, J., Guérin, H., Méléard, S.: Measurability of optimal transportation and convergence rate for Landau type interacting particle systems. Preprint (2007) · Zbl 1183.60037
[9] Fournier, N.: Uniqueness for a class of spatially homogeneous Boltzmann equations without angular cutoff. J. Stat. Phys. 125(4), 927–946 (2006) · Zbl 1107.82045 · doi:10.1007/s10955-006-9208-6
[10] Fournier, N., Méléard, S.: A stochastic particle numerical method for 3D Boltzmann equations without cutoff. Math. Comput. 71(238), 583–604 (2002) · Zbl 0990.60085
[11] Fournier, N., Méléard, S.: A weak criterion of absolute continuity for jump processes: application to the Boltzmann equation. Bernoulli 8(4), 537–558 (2002) · Zbl 1009.60048
[12] Fournier, N., Mouhot, C.: On the well-posedness of the spatially homogeneous Boltzmann equation with a moderate angular singularity. Preprint (2007) · Zbl 1175.76129
[13] Horowitz, J., Karandikar, R.L.: Martingale problems associated with the Boltzmann equation. In: Seminar on Stochastic Processes, San Diego, CA, 1989. Progr. Probab., vol. 18, pp. 75–122. Birkhäuser, Boston (1990) · Zbl 0696.60095
[14] Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland Mathematical Library, vol. 24. North-Holland, Amsterdam (1981) · Zbl 0495.60005
[15] Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes. Grundlehren der Mathematischen Wissenschaften, vol. 288. Springer, Berlin (1987) · Zbl 0635.60021
[16] Lu, X., Mouhot, C.: About measures solutions of the spatially homogeneous Boltzmann equation. Work in progress
[17] Mischler, S., Wennberg, B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 16(4), 467–501 (1999) · Zbl 0946.35075 · doi:10.1016/S0294-1449(99)80025-0
[18] Tanaka, H.: Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrscheinlichkeitstheor. Verwandte. Geb. 46(1), 67–105 (1978) · Zbl 0389.60079 · doi:10.1007/BF00535689
[19] Tanaka, H.: On the uniqueness of Markov process associated with the Boltzmann equation of Maxwellian molecules. In: Proceedings of the International Symposium on Stochastic Differential Equations. Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1976, pp. 409–425. Wiley, New York (1978)
[20] Toscani, G., Villani, C.: Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas. J. Stat. Phys. 94(3–4), 619–637 (1999) · Zbl 0958.82044 · doi:10.1023/A:1004589506756
[21] Villani, C.: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal. 143(3), 273–307 (1998) · Zbl 0912.45011 · doi:10.1007/s002050050106
[22] Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Handbook of mathematical fluid dynamics, vol. I, pp. 71–305. North-Holland, Amsterdam (2002) · Zbl 1170.82369
[23] Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. AMS, Providence (2003) · Zbl 1106.90001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.