×

CM newforms with rational coefficients. (English) Zbl 1226.11057

A motivation of this article comes from the complete determination of singular \(K3\) surfaces defined over \(\mathbb Q\). Here the term “singular” refers to the maximal Picard number 20 so that the transcendental lattice is of rank 2. A theorem of R. Livné [Isr. J. Math. 92, No. 1–3, 149–156 (1995; Zbl 0847.11035)] asserts that the two-dimensional Galois representation of the transcendental lattice of a singular \(K3\) surface over \(\mathbb Q\) is associated to a modular form of weight 3.
The first question dealt with in this article is to determine all CM newforms of weight 3 with rational coefficients. The result is the following
Theorem: Assume the extended Riemann hypotheses (ERH) for odd real Dirichlet characters. Then there are only finitely many CM newforms with rational coefficients for fixed weight up to twisting.
For weights \(2,3,4,5,6,2^r+1, 3\cdot 2^r+1\) \((r\in \mathbb N)\) this holds unconditionally.
The idea of proof is to translate the statement to Hecke characters, and classify Hecke characters. Tables for weight 3 (and 4) are produced, where finiteness holds unconditionally.
The next question is a geometric realization problem: how many of these CM newforms actually occur in association with singular K3 surfaces over \(\mathbb Q\)? This is answered in the following theorem with Elkies.
Theorem: Assuming ERH for odd real Dirichlet characters, every newform of weight 3 with rational coefficients is associated to a singular \(K3\) surface over \(\mathbb Q\).

MSC:

11F11 Holomorphic modular forms of integral weight
11F30 Fourier coefficients of automorphic forms
11F23 Relations with algebraic geometry and topology
14J28 \(K3\) surfaces and Enriques surfaces
14J32 Calabi-Yau manifolds (algebro-geometric aspects)

Citations:

Zbl 0847.11035

References:

[1] Beukers, F., Montanus, H.: Fibrations of K3-surfaces and Belyi-maps. Preprint (2006). Additional data available at http://www.math.uu.nl/people/beukers/mirandapersson/Dessins.html . · Zbl 1266.11078
[2] Boyd, D.W., Kisilevski, H.: On the exponent of the ideal class group of complex quadratic fields. Proc. Am. Math. Soc. 31, 433–436 (1972) · Zbl 0252.12002
[3] Cox, D.A.: Primes of the Form x 2+ny 2: Fermat, Class Field Theory, and Complex Multiplication. Wiley-Interscience, New York (1989) · Zbl 0701.11001
[4] Cynk, S., Hulek, K.: Higher-dimensional modular Calabi-Yau manifolds. Can. Math. Bull. 50(4), 486–503 (2007) · Zbl 1141.14009 · doi:10.4153/CMB-2007-049-9
[5] Cynk, S., Meyer, C.: Modularity of some non-rigid double octic Calabi-Yau threefolds. Preprint (2005), arXiv: math.AG/0505670 · Zbl 1161.14016
[6] Cynk, S., Schütt, M.: Generalised Kummer constructions and Weil restrictions. Preprint (2007), arXiv: 0710.4565 · Zbl 1168.14015
[7] Elkies, N.D., Schütt, M.: Modular forms and K3 surfaces. Preprint (2008), arXiv: 0809.0830 · Zbl 1314.14069
[8] Heath-Brown, D.R.: Imaginary quadratic fields with class group exponent 5. Forum Math. 20(2), 275–283 (2008) · Zbl 1268.11150 · doi:10.1515/FORUM.2008.014
[9] Livné, R.: Motivic orthogonal two-dimensional representations of Gal \((\bar {\mathbb{Q}}/\mathbb{Q})\) . Isr. J. Math. 92, 149–156 (1995) · Zbl 0847.11035 · doi:10.1007/BF02762074
[10] Nikulin, V.V.: Integral symmetric bilinear forms and some of their applications. Math. USSR Izv. 14(1), 103–167 (1980) · Zbl 0427.10014 · doi:10.1070/IM1980v014n01ABEH001060
[11] Pjateckiĭ-Šapiro, I.I., Šafarevič, I.R.: Torelli’s theorem for algebraic surfaces of type K3. Izv. Akad. Nauk SSSR Ser. Mat. 35, 530–572 (1971)
[12] Ribet, K.: Galois representations attached to eigenforms with Nebentypus. In: Serre, J.-P., Zagier, D.B. (eds.) Modular Functions of one Variable V, Bonn, 1976. Lect. Notes in Math., vol. 601, pp. 17–52. Springer, Berlin (1977)
[13] Schütt, M.: Hecke eigenforms and the arithmetic of singular K3 surfaces. Dissertation, Universität Hannover (2006) · Zbl 1297.11041
[14] Schütt, M.: Elliptic fibrations of some extremal K3 surfaces. Rocky Mt. J. Math. 37(2), 609–652 (2007) · Zbl 1133.14037 · doi:10.1216/rmjm/1181068770
[15] Schütt, M.: Fields of definition of singular K3 surfaces. Commun. Number Theory Phys. 1(2), 307–321 (2007) · Zbl 1157.14308
[16] Schütt, M.: Arithmetic of a singular K3 surface. Preprint (2006), arXiv: math.NT/0605560 . To appear in Mich. Math. J.
[17] Serre, J.-P.: Sur les représentations modulaires de degré 2 de Gal \((\bar{\mathbb{Q}}/\mathbb{Q})\) . Duke Math. J. 54, 179–230 (1987) · Zbl 0641.10026 · doi:10.1215/S0012-7094-87-05413-5
[18] Shioda, T., Inose, H.: On Singular K3 Surfaces. In: Baily, W.L., Jr., Shioda, T. (eds.) Complex Analysis and Algebraic Geometry, pp. 119–136. Iwanami Shoten, Tokyo (1977) · Zbl 0374.14006
[19] Shioda, T., Mitani, N.: Singular Abelian surfaces and binary quadratic forms. In: Classification of Algebraic Varieties and Compact Complex Manifolds. Lect. Notes in Math., vol. 412, pp. 259–287. Springer, Berlin (1974) · Zbl 0302.14011
[20] Weinberger, P.J.: Exponents of the class groups of complex quadratic fields. Acta Arith. 22, 117–124 (1973) · Zbl 0217.04202
[21] Werner, J., van Geemen, B.: New examples of threefolds with c 1=0. Math. Z. 203, 211–225 (1990) · Zbl 0694.14020 · doi:10.1007/BF02570731
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.