×

The Möbius inversion formula for Fourier series applied to Bernoulli and Euler polynomials. (English) Zbl 1253.11028

In this clearly and well written paper the authors first discuss and then apply the technique of Möbius inversion from analytic number theory to the Fourier series expansions of Bernoulli polynomials. (It is mentioned that the Möbius inversion of Fourier series is a special cases of a general theory that extends far beyond the case of Fourier series and which the authors trace back to an idea of E. Cesàro [Brioschi Ann. (2) 13, 339–351 (1885; JFM 17.0224.01)]. Other papers are cited.) One obtained result is that \(\cos(2\pi x)\) can be expanded using a (fixed) even \(2k\) degree Bernoulli polynomial evaluated at the fractional parts of \(nx\) for all positive integers \(n\). Up to a regularization constant depending on \(k\) the coefficients are given by the Möbius function \(\mu(n)\) divided by \(n^{2k}\). For \(\sin(2\pi x)\) one has to change to odd degree \(2k+1\). Similar results for Euler polynomials are deduced. As an illustrative example for this method the authors provide the expansion of the constructible number \(\cos(2\pi/17)\) using the Bernoulli polynomial \(B_2\) evaluated at the rationals \(n/17\) modulo \(1\). The evaluation of the Fourier expansions of Bernoulli polynomials and the corresponding Möbius inverse at rational arguments \(x = r / m\) is the second main topic of the paper. The periodicity modulo \(m\) introduced into the series in this way lead to sums \(\sum 1/n^k\) and \(\sum \mu(n)/n^k\), where the sums are extended over positive integers \(n\) congruent \(r\) modulo \(m\). In an elementary manner, using only linear algebra and an auxiliary result involving matrices defined by Bernoulli polynomials and the cosine function, expressions for certain combinations of such sums are evaluated explicitly. This approach is in the spirit of P. Codecà, R. Dvornicich and U. Zannier [J. Théor. Nombres Bordx. 10, No.1, 49–64 (1998; Zbl 0929.11003)], which studies the case \(k=1\). Finally, the authors show asymptotic properties concerning Bernoulli and Euler polynomials. The results are not new but the proofs are simpler and, in addition, the rate of convergence is investigated.

MSC:

11B68 Bernoulli and Euler numbers and polynomials
11A25 Arithmetic functions; related numbers; inversion formulas
11C20 Matrices, determinants in number theory
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
Full Text: DOI

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1972), Dover: Dover New York, Electronic copy available in http://www.math.sfu.ca/ cbm/aands/ · Zbl 0543.33001
[2] Apostol, T. M., Introduction to Analytic Number Theory (1976), Springer-Verlag · Zbl 0335.10001
[3] Balanzario, E. P., Evaluation of Dirichlet series, Amer. Math. Monthly, 108, 969-971 (2001) · Zbl 1025.11027
[4] Benito, M.; Navas, L. M.; Varona, J. L., Möbius inversion formulas for flows of arithmetic semigroups, J. Number Theory, 128, 390-412 (2008) · Zbl 1147.11006
[5] Benito, M.; Navas, L. M.; Varona, J. L., Möbius inversion from the point of view of arithmetical semigroup flows, Proceedings of the “Segundas Jornadas de Teoría de Números”, Madrid, 2007. Proceedings of the “Segundas Jornadas de Teoría de Números”, Madrid, 2007, Bibl. Rev. Mat. Iberoamericana, 63-81 (2008) · Zbl 1235.11008
[6] Breitenfellner, H., A unified Möbius inversion formula, C. R. Math. Rep. Acad. Sci. Canada, 13, 39-42 (1991) · Zbl 0748.11004
[7] Cesàro, E., Sur l’inversion de certaines séries, Ann. Mat. Pura Appl. (2), 13, 339-351 (1885) · JFM 17.0224.01
[8] Chebyshev, P. L., Note sur différentes séries, J. Math. Pures Appl. (1), 16, 337-346 (1851) · JFM 06.0249.01
[9] Chen, Z.; Shen, Y.; Ding, J., The Möbius inversion and Fourier coefficients, Appl. Math. Comput., 117, 161-176 (2001) · Zbl 1034.11006
[10] Ciaurri, Ó.; Navas, L. M.; Varona, J. L., A transform involving Chebyshev polynomials and its inversion formula, J. Math. Anal. Appl., 323, 57-62 (2006) · Zbl 1114.33009
[11] Codec, P.; Dvornicich, R.; Zannier, U., Two problems related to the nonvanishing of \(L(1, \chi)\), J. Théor. Nombres Bordeaux, 10, 49-64 (1998) · Zbl 0929.11003
[12] Costabile, F.; Dell’Accio, F.; Gualtieri, M. I., A new approach to Bernoulli polynomials, Rend. Mat. Appl. (7), 26, 1-12 (2006) · Zbl 1105.11002
[13] Cvijović, D.; Klinowski, J., New formulae for the Bernoulli and Euler polynomials at rational arguments, Proc. Amer. Math. Soc., 123, 1527-1535 (1995) · Zbl 0827.11012
[14] Dilcher, K., Asymptotic behaviour of Bernoulli, Euler, and generalized Bernoulli polynomials, J. Approx. Theory, 49, 321-330 (1987) · Zbl 0609.10008
[15] Srivastava, H. M., Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc., 129, 77-84 (2000) · Zbl 0978.11004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.