×

American option valuation with particle filters. (English) Zbl 1252.91082

Carmona, René A. (ed.) et al., Numerical methods in finance. Selected papers based on the presentations at the workshop, Bordeaux, France, June 2010. Berlin: Springer (ISBN 978-3-642-25745-2/hbk; 978-3-642-25746-9/ebook). Springer Proceedings in Mathematics 12, 51-82 (2012).
Summary: A method to price American-style option contracts in a limited information framework is introduced. The pricing methodology is based on sequential Monte Carlo techniques, as presented in [A. Doucet, N. De Freitas and N. Gordon (eds.), Sequential Monte Carlo Methods in Practice. New York, NY: Springer (2001; Zbl 0967.00022)], and the least-squares Monte Carlo approach of F. A. Longstaff and E. S. Schwartz [“Valuing American options by simulation: a simple least-squares approach”, Rev. Financ. Stud. 14, No. 1, 113–147 (2001; doi:10.1093/rfs/14.1.113)]. We apply this methodology using a risk-neutralized version of the square-root mean-reverting model, as used for European option valuation by S. L. Heston [“A closed-form solution for options with stochastic volatility with applications to bond and currency options”, Rev. Financ. Stud. 6, No. 2, 327–343 (1993; doi:10.1093/rfs/6.2.327)]. We assume that volatility is a latent stochastic process, and we capture information about it using particle filter based “summary vectors”. These summaries are used in the exercise/hold decision at each time step in the option contract period. We also benchmark our pricing approximation against the full-state (observable volatility) result. Moreover, posterior inference, utilizing market-observed American put option prices on the NYSE Arca Oil Index, is made on the volatility risk premium, which we assume is a constant parameter. Comparisons on the volatility risk premium are also made in terms of time and observability effects, and statistically significant differences are reported.
For the entire collection see [Zbl 1238.91005].

MSC:

91G70 Statistical methods; risk measures
91G20 Derivative securities (option pricing, hedging, etc.)
91G60 Numerical methods (including Monte Carlo methods)
62F15 Bayesian inference
62L15 Optimal stopping in statistics

Citations:

Zbl 0967.00022
Full Text: DOI

References:

[1] Bakshi, G.; Kapadia, N., Delta-hedged gains and the negative market volatility risk premium, The Review of Financial Studies, 16, 2, 527-566 (2003)
[2] Bakshi, G., Kapadia, N.: Volatility risk premiums embedded in individual equity options: Some new insights. The Journal of Derivatives Fall, 45-54 (2003)
[3] Bellman, R.: An Introduction to the Theory of Dynamic Programming. Rand Corporation (1953) · Zbl 0051.37402
[4] Black, F.; Scholes, M., The pricing of options and corporate liabilities, Journal of Political Economy, 81, 637-659 (1973) · Zbl 1092.91524
[5] Brennan, M. J.; Schwartz, E. S., The valuation of American put options, The Journal of Finance, 32, 2, 449-462 (1977)
[6] Broadie, M.; Detemple, J.; Ghysels, E.; Torres, O., American options with stochastic dividends and volatility: A nonparametric investigation, Journal of Econometrics, 94, 53-92 (2000) · Zbl 1122.91323
[7] Broadie, M.; Glasserman, P., Pricing American-style securities using simulation, Journal of Economic Dynamics and Control, 21, 1323-1352 (1997) · Zbl 0901.90009
[8] Broadie, M.; Kaya, O., Exact simulation of stochastic volatility and other affine jump diffusion processes, Operations Research, 54, 2, 217-231 (2006) · Zbl 1167.91363
[9] Carr, P.; Geman, H.; Madan, D. B., Pricing and hedging in incomplete markets, Journal of Financial Economics, 62, 131-167 (2001)
[10] Carr, P.; Jarrow, R.; Myneni, R., Alternative characterizations of American put options, Mathematical Finance, 2, 2, 87-106 (1992) · Zbl 0900.90004
[11] Carrière, J., Valuation of the early-exercise price for derivative securities using simulations and splines, Insurance: Mathematics and Economics, 19, 19-30 (1996) · Zbl 0894.62109
[12] Carvalho, C. M.; Johannes, M. S.; Lopes, H. F.; Polson, N. G., Particle learning and smoothing, Statistical Science, 25, 1, 88-106 (2010) · Zbl 1328.62541
[13] Chernov, M.; Ghysels, E., A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation, Journal of Financial Economics, 56, 407-458 (2000)
[14] Chopin, N., Central Limit Theorem for sequential Monte Carlo methods and its applications to Bayesian inference, Annals of Statistics, 32, 6, 2385-2411 (2004) · Zbl 1079.65006
[15] Clarke, N.; Parrott, K., Multigrid for American option pricing with stochastic volatility, Applied Mathematical Finance, 6, 177-195 (1999) · Zbl 1009.91034
[16] Cox, J.; Ingersoll, J.; Ross, S., A theory of the term structure of interest rates, Econometrica, 53, 385-407 (1985) · Zbl 1274.91447
[17] DeGroot, M.H.: Optimal Statistical Decisions. McGraw-Hill, New York (1970) · Zbl 0225.62006
[18] Dempster, M.; Richards, D., Pricing American options fitting the smile, Mathematical Finance, 10, 2, 157-177 (2000) · Zbl 1034.91038
[19] Desai, R., Lele, T., Viens, F.: A Monte Carlo method for portfolio optimization under partially observed stochastic volatility. In: 2003 IEEE International Conference on Computational Intelligence for Financial Engineering: Proceedings. IEEE, Hong Kong (2003)
[20] Detemple, J.; Osakwe, C., The valuation of volatility options, European Finance Review, 4, 21-50 (2000) · Zbl 0978.91031
[21] Detemple, J.; Tian, W., The valuation of American options for a class of diffusion processes, Management Science, 48, 7, 917-937 (2002) · Zbl 1232.91660
[22] Doran, J.S., Ronn, E.I.: On the market price of volatility risk. Tech. rep., University of Texas at Austin, Austin (2003)
[23] Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice, first edn. Springer, New York (2001) · Zbl 0967.00022
[24] Eraker, B., Do stock prices and volatility jump? Reconciling evidence from spot and option prices, The Journal of Finance, LIX, 3, 1367-1404 (2004)
[25] Finucane, T. J.; Tomas, M. J., American stochastic volatility call option pricing: A lattice based approach, Review of Derivatives Research, 1, 183-201 (1997) · Zbl 1274.91411
[26] Fouque, J.P., Papanicolaou, G., Sircar, K.R.: Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press, Cambridge (2000) · Zbl 0954.91025
[27] de Freitas, N., Andrieu, C., Højen-Sørensen, P., Niranjan, M., Gee, A.: Sequential Monte Carlo methods for neural networks. In: Sequential Monte Carlo Methods in Practice, chap. 17, pp. 359-379. Springer (2001) · Zbl 1056.93595
[28] Geske, R.; Johnson, H., The American put option valued analytically, The Journal of Finance, 39, 5, 1511-1524 (1984)
[29] Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New York (2004) · Zbl 1038.91045
[30] Guan, L. K.; Guo, X., Pricing American options with stochastic volatility: Evidence from S&P 500 futures options, The Journal of Futures Markets, 20, 7, 625-659 (2000)
[31] Harrison, J. M.; Pliska, S. R., Martingales and stochastic integrals in the theory of continuous trading, Stochastic Processes and their Applications, 11, 215-260 (1981) · Zbl 0482.60097
[32] Heath, D.; Platen, E.; Schweizer, M., A comparison of two quadratic approaches to hedging in incomplete markets, Mathematical Finance, 11, 4, 385-413 (2001) · Zbl 1032.91058
[33] Heston, S., A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies, 6, 2, 327-343 (1993) · Zbl 1384.35131
[34] Hobson, D.; Rogers, L., Complete models with stochastic volatility, Mathematical Finance, 8, 27-48 (1998) · Zbl 0908.90012
[35] Hull, J.; White, A., The pricing of options on assets with stochastic volatility, The Journal of Finance, 42, 2, 281-300 (1987)
[36] Jacquier, E.; Polson, N. G.; Rossi, P. E., Bayesian analysis of stochastic volatility models with fat tails and correlated errors, Journal of Econometrics, 122, 185-212 (2004) · Zbl 1328.91254
[37] Jasra, A., Moral, P.D.: Sequential Monte Carlo for option pricing. Stochastic Analysis and Applications, to appear, (2010) · Zbl 1217.91201
[38] Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions: Volume 2, second edn. John Wiley & Sons, Inc., New York (1995) · Zbl 0821.62001
[39] Kapadia, N.: Negative vega? Understanding options on spreads. Journal of Alternative Investments Spring (1999)
[40] Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, second edn. Springer, New York (1991) · Zbl 0734.60060
[41] Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Springer, New York (1998) · Zbl 0941.91032
[42] Kitagawa, G., Monte Carlo filter and smoother for non-Gaussian non-linear state space models, Journal of Computational and Graphical Statistics, 5, 1, 1-25 (1996)
[43] Kitagawa, G., Sato, S.: Monte Carlo smoothing and self-organizing state-space model. In: Sequential Monte Carlo Methods in Practice, pp. 177-196. Springer (2001) · Zbl 1056.93581
[44] Liu, J., West, M.: Combined parameter and state estimation in simulation-based filtering. In: Sequential Monte Carlo Methods in Practice, chap. 10, pp. 197-217. Springer (2001) · Zbl 1056.93583
[45] Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, New York (2004)
[46] Longstaff, F. A.; Schwartz, E. S., Valuing American options by simulation: A simple least-squares approach, The Review of Financial Studies, 14, 1, 113-147 (2001)
[47] Ludkovski, M., A simulation approach to optimal stopping under partial information, Stochastic Processes and Applications, 119, 12, 2071-2087 (2009) · Zbl 1191.65006
[48] Mastroem, L.: Dynamic programming methods for the American option pricing problem with stochastic volatility. Advances in Mathematical Sciences and Applications 8(2), 943-948 (1998) · Zbl 0912.90028
[49] Melenberg, B.; Werker, B. J., A convenient way to characterize equivalent martingale measures in incomplete markets, Statistical Inference for Stochastic Processes, 2, 11-30 (1999) · Zbl 0964.60052
[50] Musiela, M., Rutkowski, M.: Martingale Methods in Financial Modeling. Springer, New York (1998) · Zbl 0906.60001
[51] Myneni, R., The pricing of the American option, The Annals of Applied Probability, 2, 1, 1-23 (1992) · Zbl 0753.60040
[52] Pan, J., The jump-risk premia implicit in options: Evidence from an integrated time-series study, Journal of Financial Economics, 63, 3-50 (2002)
[53] Pastorello, S.; Renault, E.; Touzi, N., Statistical inference for random variance option pricing, Journal of Business & Economic Statistics, 18, 3, 358-367 (2000)
[54] Pham, H.; Runggaldier, W.; Sellami, A., Approximation by quantization of the filter process and applications to optimal stopping under partial observation, Monte Carlo Methods and Applications, 11, 1, 57-81 (2005) · Zbl 1076.60060
[55] Pitt, M.; Shephard, N., Filtering via simulation: Auxiliary particle filters, Journal of the American Statistical Association, 94, 446, 590-599 (1999) · Zbl 1072.62639
[56] Pitt, M., Shephard, N.: Auxiliary variable based particle filters. In: Sequential Monte Carlo Methods in Practice, pp. 177-196. Springer (2001) · Zbl 1056.93590
[57] Rambharat, B.R.: Valuation methods for American derivatives in a stochastic volatility framework. Ph.D. thesis, Carnegie Mellon University, Pittsburgh (2005)
[58] Rambharat, B. R.; Brockwell, A. E., Sequential Monte Carlo pricing of American-style options under stochastic volatility models, The Annals of Applied Statistics, 4, 1, 222-265 (2010) · Zbl 1189.62164
[59] Rambharat, B.R., Brockwell, A.E.: Supplement to “Sequential Monte Carlo pricing of American-style options under stochastic volatility models”. The Annals of Applied Statistics (2010) · Zbl 1189.62164
[60] Renault, E.; Touzi, N., Option hedging and implied volatilities in a stochastic volatility model, Mathematical Finance, 6, 3, 279-302 (1996) · Zbl 0915.90028
[61] Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, first edn. Springer-Verlag, New York (2000)
[62] Rogers, L., Monte Carlo valuation of American options, Mathematical Finance, 12, 3, 271-286 (2002) · Zbl 1029.91036
[63] Rubenthaler, S., Rydén, T., Wiktorsson, M.: Fast simulated annealing in \({\mathbb{R}}^d\) with an application to maximum likelihood estimation in state-space models. Stochastic Processes and their Applications 119(6) (2009) · Zbl 1163.60320
[64] Sarwar, G., An empirical investigation of the premium for volatility risk in currency options for the British pound, Applied Financial Economics, 12, 913-921 (2002)
[65] Schwartz, E., The stochastic behavior of commodity prices: Implications for valuation and hedging, The Journal of Finance, LII, 3, 923-973 (1997)
[66] Seber, G., Wild, C.: Nonlinear Regression, first edn. John Wiley & Sons, Inc., New York (2003)
[67] Stein, E.; Stein, C., Stock price distributions with stochastic volatility: An analytic approach, The Review of Financial Studies, 4, 4, 727-752 (1991) · Zbl 1458.62253
[68] Sullivan, M. A., Valuing American put options using Gaussian quadrature, Review of Financial Studies, 13, 1, 75-94 (2000)
[69] Touzi, N., American options exercise boundary when the volatility changes randomly, Applied Mathematics and Optimization, 39, 411-422 (1999) · Zbl 0937.60039
[70] Tsitsiklis, J. N.; Roy, B., Regression Methods for Pricing Complex American-Style Derivatives, IEEE Transactions on Neural Networks, 12, 4, 694-703 (2001)
[71] Tzavalis, E., Wang, S.: Pricing American options under stochastic volatility: A new method using Chebyshev polynomials to approximate the early exercise boundary. Working paper, Queen Mary, University of London, London (2003)
[72] Whaley, R.E.: Derivatives on market volatility: Hedging tools long overdue. The Journal of Derivatives (Fall), 71-84 (1993)
[73] Whittle, P., Sequential decision processes with essential unobservables, Advances in Applied Probability, 1, 271-287 (1969) · Zbl 0212.21003
[74] Wu, A.M.K.: Arbitrage-free evaluation of American-style options on assets with stochastic variance characteristics. In: Proceedings of EFA 2001 Barcelona Meetings. Univ. Pompeu Fabra, Barcelona (2001)
[75] Yu, J., On leverage in a stochastic volatility model, Journal of Econometrics, 127, 165-178 (2005) · Zbl 1335.91116
[76] Zhang, Z.; Lim, K. G., A non-lattice pricing model of American options under stochastic volatility, The Journal of Futures Markets, 26, 5, 417-448 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.