×

Sequential Monte Carlo pricing of American-style options under stochastic volatility models. (English) Zbl 1189.62164

Ann. Appl. Stat. 4, No. 1, 222-265 (2010); correction ibid. 5, No. 1, 604 (2011).
Summary: We introduce a new method to price American-style options on underlying investments governed by stochastic volatility (SV) models. The method does not require the volatility process to be observed. Instead, it exploits the fact that the optimal decision functions in the corresponding dynamic programming problem can be expressed as functions of conditional distributions of volatility, given observed data. By constructing statistics summarizing information about these conditional distributions, one can obtain high quality approximate solutions. Although the required conditional distributions are in general intractable, they can be arbitrarily precisely approximated using sequential Monte Carlo schemes. The drawback, as with many Monte Carlo schemes, is potentially heavy computational demand. We present two variants of the algorithm, one closely related to the well-known least-squares Monte Carlo algorithm of F. A. Longstaff and E. S. Schwartz [Rev. Financial Stud. 14, 113–147 (2001)], and the other solving the same problem using a “brute force” gridding approach. We estimate an illustrative SV model using Markov chain Monte Carlo (MCMC) methods for three equities. We also demonstrate the use of our algorithm by estimating the posterior distribution of the market price of volatility risk for each of the three equities.

MSC:

62P05 Applications of statistics to actuarial sciences and financial mathematics
62L15 Optimal stopping in statistics
91G60 Numerical methods (including Monte Carlo methods)
62-08 Computational methods for problems pertaining to statistics
65C05 Monte Carlo methods
65C40 Numerical analysis or methods applied to Markov chains

References:

[1] Bakshi, G. and Kapadia, N. (2003a). Delta-hedged gains and the negative market volatility risk premium. The Review of Financial Studies 16 527-566.
[2] Bakshi, G. and Kapadia, N. (2003b). Volatility risk premiums embedded in individual equity options: Some new insights. The Journal of Derivatives Fall 11 45-54.
[3] Bellman, R. (1953). An Introduction to the Theory of Dynamic Programming . Rand Corporation, Santa Monica, CA. · Zbl 0051.37402
[4] Bertsekas, D. P. (2005). Dynamic Programming and Optimal Control, Vol. 1 , 3rd ed. Athena Scientific, Belmont, MA. · Zbl 1125.90056
[5] Bertsekas, D. P. (2007). Dynamic Programming and Optimal Control, Vol. 2 , 3rd ed. Athena Scientific, Belmont, MA. · Zbl 1083.90044
[6] Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy 81 637-659. · Zbl 1092.91524
[7] Brennan, M. J. and Schwartz, E. S. (1977). The valuation of American put options. The Journal of Finance 32 449-462.
[8] Broadie, M. and Glasserman, P. (1997). Pricing American-style securities using simulation. J. Econ. Dynam. Control 21 1323-1352. · Zbl 0901.90009 · doi:10.1016/S0165-1889(97)00029-8
[9] Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods , 2nd ed. Springer, New York. · Zbl 0709.62080
[10] Brockwell, A. and Kadane, J. (2003). A gridding method for Bayesian sequential decision problems. J. Comput. Graph. Statist. 12 566-584. · doi:10.1198/1061860032274
[11] Carr, P., Jarrow, R. and Myneni, R. (1992). Alternative characterizations of American put options. Math. Finance 2 87-106. · Zbl 0753.60040 · doi:10.1214/aoap/1177005768
[12] Carrière, J. (1996). Valuation of the early-exercise price for derivative securities using simulations and splines. Insurance Math. Econom. 19 19-30.
[13] Chernov, M. and Ghysels, E. (2000). A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation. Journal of Financial Economics 56 407-458.
[14] Chernov, M., Gallant, A. R., Ghysels, E. and Tauchen, G. (2003). Alternative models for stock price dynamics. J. Econometrics 116 225-257. · Zbl 0583.62026 · doi:10.1093/biomet/72.1.67
[15] Clarke, N. and Parrott, K. (1999). Multigrid for American option pricing with stochastic volatility. Applied Mathematical Finance 6 177-195. · Zbl 1009.91034 · doi:10.1080/135048699334528
[16] Clement, E., Lamberton, D. and Protter, P. (2002). An analysis of a least squares regression method for American option pricing. Finance Stoch. 6 449-471. · Zbl 1039.91020 · doi:10.1007/s007800200071
[17] DeGroot, M. H. (1970). Optimal Statistical Decisions . McGraw-Hill, New York. · Zbl 0225.62006
[18] Doucet, A., de Freitas, N. and Gordon, N. (2001). Sequential Monte Carlo Methods in Practice , 1st ed. Springer, New York. · Zbl 0967.00022
[19] Eraker, B. (2004). Do stock prices and volatility jump? Reconciling evidence from spot and option prices. The Journal of Finance 59 1367-1404.
[20] Finucane, T. J. and Tomas, M. J. (1997). American stochastic volatility call option pricing: A lattice based approach. Review of Derivatives Research 1 183-201. · Zbl 1274.91411
[21] Fouque, J. P., Papanicolaou, G. and Sircar, K. R. (2000). Derivatives in Financial Markets with Stochastic Volatility . Cambridge Univ. Press, Cambridge. · Zbl 0954.91025
[22] Gallant, A., Hsieh, D. and Tauchen, G. (1997). Estimation of stochastic volatility models with diagnostics. J. Econometrics 81 159-192. · Zbl 0904.62134 · doi:10.1016/S0304-4076(97)00039-0
[23] Geske, R. and Johnson, H. (1984). The American put option valued analytically. The Journal of Finance 39 1511-1524.
[24] Ghysels, E., Harvey, A. and Renault, E. (1996). Stochastic volatility. In Statistical Methods in Finance. Handbook of Statistics 14 . Elsevier, Amsterdam, The Netherlands. · Zbl 1122.91323 · doi:10.1016/S0304-4076(99)00017-2
[25] Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering . Springer, New York. · Zbl 1038.91045
[26] Guan, L. K. and Guo, X. (2000). Pricing American options with stochastic volatility: Evidence from S&P 500 futures options. The Journal of Futures Markets 20 625-659.
[27] Heston, S. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies 6 327-343. · Zbl 1384.35131
[28] Hull, J. and White, A. (1987). The pricing of options on assets with stochastic volatility. The Journal of Finance 42 281-300.
[29] Jacquier, E., Polson, N. G. and Rossi, P. E. (1994). Bayesian analysis of stochastic volatility models. J. Bus. Econom. Statist. 12 371-389.
[30] Jacquier, E., Polson, N. G. and Rossi, P. E. (2004). Bayesian analysis of stochastic volatility models with fat tails and correlated errors. J. Econometrics 122 185-212. · Zbl 1328.91254 · doi:10.1016/j.jeconom.2003.09.001
[31] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus , 2nd ed. Springer, New York. · Zbl 0734.60060
[32] Karatzas, I. and Shreve, S. E. (1998). Methods of Mathematical Finance . Springer, New York. · Zbl 0941.91032
[33] Kim, S., Shephard, N. and Chib, S. (1998). Stochastic volatility: Likelihood inference and comparison with ARCH models. Rev. Econom. Stud. 65 361-393. · Zbl 0910.90067 · doi:10.1111/1467-937X.00050
[34] Kitagawa, G. (1987). Non-Gaussian state-space modeling of nonstationary time series. J. Amer. Statist. Assoc. 82 1032-1063. · Zbl 0644.62088 · doi:10.2307/2289375
[35] Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian non-linear state space models. J. Comput. Graph. Statist. 5 1-25.
[36] Kitagawa, G. and Sato, S. (2001). Monte Carlo smoothing and self-organizing state-space model. In Sequential Monte Carlo Methods in Practice 177-196. Springer, New York. · Zbl 1056.93581
[37] Kloeden, P. E. and Platen, E. (2000). Numerical Solution of Stochastic Differential Equations , 1st ed. Springer, New York. · Zbl 0752.60043
[38] Kotecha, J. and Djuric, P. (2003). Gaussian particle filtering. IEEE Trans. Signal Process. 51 2592-2601. · Zbl 1369.94195 · doi:10.1109/TSP.2003.816758
[39] Liu, J. and West, M. (2001). Combined parameter and state estimation in simulation-based filtering. In Sequential Monte Carlo Methods in Practice 197-217. Springer, New York. · Zbl 1056.93583
[40] Longstaff, F. A. and Schwartz, E. S. (2001). Valuing American options by simulation: A simple least-squares approach. The Review of Financial Studies 14 113-147. · Zbl 1386.91144
[41] Melenberg, B. and Werker, B. J. (2001). The implicit price of volatility risk: An empirical analysis. Technical report, Tilburg Univ., The Netherlands.
[42] Merton, R. C. (1973). The theory of rational option pricing. Bell Journal of Economics and Management Science 4 141-183. · Zbl 1257.91043
[43] Musiela, M. and Rutkowski, M. (1998). Martingale Methods in Financial Modeling . Springer, New York. · Zbl 0906.60001
[44] Myneni, R. (1992). The pricing of the American option. Ann. Appl. Probab. 2 1-23. · Zbl 0753.60040 · doi:10.1214/aoap/1177005768
[45] Pan, J. (2002). The jump-risk premia implicit in options: Evidence from an integrated time-series study. Journal of Financial Economics 63 3-50.
[46] Pastorello, S., Renault, E. and Touzi, N. (2000). Statistical inference for random variance option pricing. J. Bus. Econom. Statist. 18 358-367.
[47] Pitt, M. and Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. J. American Statist. Assoc. 94 590-599. · Zbl 1072.62639 · doi:10.2307/2670179
[48] Rambharat, B. R. (2005). Valuation methods for American derivatives in a stochastic volatility framework. Ph.D. thesis, Carnegie Mellon Univ., Pittsburgh.
[49] Rambharat, B. R. and Brockwell, A. E. (2009). Supplement to “Sequential Monte Carlo pricing of American-style options under stochastic volatility models.” DOI: . · Zbl 1189.62164 · doi:10.1214/09-AOAS286
[50] Renault, E. and Touzi, N. (1996). Option hedging and implied volatilities in a stochastic volatility model. Math. Finance 6 279-302. · Zbl 0915.90028 · doi:10.1111/j.1467-9965.1996.tb00117.x
[51] Rogers, L. (2002). Monte Carlo valuation of American options. Math. Finance 12 271-286. · Zbl 1029.91036 · doi:10.1111/1467-9965.02010
[52] Ross, S. M. (1983). Introduction to Stochastic Dynamic Programming . Academic Press, New York. · Zbl 0567.90065
[53] Schervish, M. J. (1995). Theory of Statistics , 1st ed. Springer-Verlag, New York. · Zbl 0834.62002
[54] Scott, L. (1987). Option pricing when the variance changes randomly. Journal of Financial and Quantitative Analysis 22 419-438.
[55] Seber, G. and Wild, C. (2003). Nonlinear Regression , 1st ed. Wiley, New York. · Zbl 0721.62062
[56] Sorenson, H. and Stubberud, A. (1968). Non-linear filtering by approximation of the a posteriori density. Internat. J. Control 8 33-51. · Zbl 0176.08302 · doi:10.1080/00207176808905650
[57] Stein, E. and Stein, C. (1991). Stock price distributions with stochastic volatility: An analytic approach. The Review of Financial Studies 4 727-752. · Zbl 1458.62253
[58] Sullivan, M. A. (2000). Valuing American put options using Gaussian quadrature. Review of Financial Studies 13 75-94.
[59] Tsitsiklis, J. N. and Van Roy, B. (2001). Regression methods for pricing complex American-style derivatives. IEEE Transactions on Neural Networks 12 694-703.
[60] Tzavalis, E. and Wang, S. (2003). Pricing American options under stochastic volatility: A new method using Chebyshev polynomials to approximate the early exercise boundary. Working paper, Queen Mary Univ. London.
[61] Wilmott, P., Howison, S. and Dewynne, J. (1995). The Mathematics of Financial Derivatives: A Student Introduction . Cambridge Univ. Press, Cambridge. · Zbl 0842.90008 · doi:10.1017/CBO9780511812545
[62] Yu, J. (2005). On leverage in a stochastic volatility model. J. Econometrics 127 165-178. · Zbl 1335.91116 · doi:10.1016/j.jeconom.2004.08.002
[63] Zhang, Z. and Lim, K.-G. (2006). A non-lattice pricing model of American options under stochastic volatility. The Journal of Futures Markets 26 417-448.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.