×

Eichler integrals, period relations and Jacobi forms. (English) Zbl 1251.11032

The authors write themselves: “This paper contains three main results: The first one is to derive two ‘period relations’ and the second one is a complete characterization of ‘period functions’ of Jacobi forms in terms of period relations. These are done by introducing the concept of ‘Jacobi integrals’ on the Jacobi group. The last one is to show, for a given holomorphic function \(P(\tau,z)\) having two period relations, there exists a unique Jacobi integral, up to Jacobi forms, with the given \(P(\tau,z)\) as its period function.”
Let \(\mathcal{H}\) be the usual upper complex half plane and \(\tau \in \mathcal{H}\) a variable living in it. Let \(z \in \mathbb{C}^j\) for some \(j \in \mathbb{N}\). Recall the Jacobi group \(\Gamma^J\) for a given subgroup \(\Gamma \subset \mathrm{SL}(2,\mathbb{Z})\) of finite index: \[ \Gamma^J:= \Gamma \propto \mathbb{Z}^{2j} = \big\{ \big[M, (\lambda,\mu)\big] \;\; M \in \Gamma, \, \lambda, \mu \in \mathbb{Z}^j \big\}. \] The Jacobi group satisfies the group law \[ \big[M_1, (\lambda_1,\mu_1)\big] \, \big[M_2, (\lambda_2,\mu_2)\big] = \big[M_1M_2, (\lambda_1,\mu_1)M_2 + (\lambda_2,\mu_2)\big] \] and acts on \(\mathcal{H} \times \mathbb{C}^j\) by \[ \gamma(\tau,z) = \left( \frac{a\tau + b}{c\tau+d} , \frac{z+\lambda \tau + \mu}{c\tau + d} \right) \] for all \(\gamma = \big[ {a \; b \choose c \; d}, (\lambda,\mu)\big] \in \Gamma^J\).
Define furthermore \[ j_{k,\mathcal{M}^{(j)}} \big( \gamma,(\tau,z) \big) := (c\tau+d)^{-k} \, e^{2\pi i \, \mathrm{Tr}\big(\mathcal{M}^{(j)}(-z^t \frac{c}{c\tau+d} z + \lambda^t \frac{a\tau + b}{c\tau + d} \lambda + 2 \lambda^t \frac{z}{c\tau d} + \lambda^t \mu)\big)} \] for \(\gamma = \bigg[ {a \; b \choose c \; d}, (\lambda,\mu)\bigg] \in \Gamma^J\), \(k \in \frac{1}{2} \mathbb{Z}\) and \(\mathcal{M}^{(j)} \in M_{j \times j}\big(\frac{1}{2} \mathbb{Z}\big)\). The slash operator on a function \(f: \mathcal{H} \times \mathbb{C}^j \to \mathbb{C}\) is defined as \[ \big(f \big|_{\omega,k,\mathcal{M}^{(j)}} \gamma \big) (\tau,z) := \omega(\gamma) \, j_{k,\mathcal{M}^{(j)}} \big(\gamma,(\tau,z)\big) \, f\big(\gamma(\tau,z)\big) \] for all \(\gamma \in \Gamma^J\) where \(\omega(\gamma)\) is the multiplier system of weight \(k\) on \(\Gamma^J\) (satisfying the usual comparability relation).
A real analytic function \(f:\mathcal{H}\times \mathbb{C}^j \to \mathbb{C}\) is called a (real analytic) Jacobi function of weight \(k \in \frac{1}{2}\mathbb{Z}\) and index \(\mathcal{M}^{(j)}\) with multiplier system \(\omega\) if \[ f \big|_{\omega,k,\mathcal{M}^{(j)}} \gamma = f \qquad \text{for all } \gamma \in \Gamma^J \] holds and if \(f\) satisfies a certain growth condition.
The space of Jacobi forms is denoted by \(J_{\omega,k,\mathcal{M}^{(j)}}\big(\Gamma^J\big)\).


Let \(\mathcal{M}^{(j)}\) be a fixed element in \(M_{j\times j}(\mathbb{Z})\) and \(\mathcal{P}_{\mathcal{M}^{(j)}}\) be the space of functions \(g\) which are holomorphic in \(\mathcal{H} \times \mathbb{C}^j\) and satisfy the growth condition \[ \big| g(\tau,z)\big| \leq K \big( |\tau|^\rho + \text{im}(\tau)^{-\sigma} \big) \, e^{2 \pi \text{Tr}\left( \frac{\mathcal{M}^{(j)} \, y^ty}{\text{im}(\tau)}\right)} \] for some positive constants \(K\), \(\rho\) and \(\sigma\), and \(y= \text{im}(z)= \big(\text{im}(z_1),\ldots, \text{im}(z_j)\big)\). The set \(\mathcal{P}_{\mathcal{M}^{(j)}}\) is a complex vector space and is preserved under the slash operator for any real \(k\).
Definition. A real analytic function \(f: \mathcal{H}\times \mathbb{C}^j \to \mathbb{C}\), which is periodic with respect to both variables \(\tau\) and \(z\), is called a Jacobi integral of weight \(k \in \frac{1}{2} \mathbb{Z}\) and index \(\mathcal{M}^{(j)}\) with a multiplier system \(\omega\) and holomorphic period functions \(P_\gamma \in \mathcal{P}_{\mathcal{M}^{(j)}}\) on \(\Gamma^J\) if it satisfies the following conditions:
(1) \(\big(f \big|_{\omega,k,\mathcal{M}^{(j)}} \gamma \big) (\tau,z) = f(\tau,z) + P_\gamma(\tau,z)\) for all \(\gamma \in \Gamma^J\),
(2) \(f(\tau,z) = \mathcal{O} \big( e^{\alpha \text{im}(\tau)}\, e^{2 \pi \text{Tr}\left( \frac{\mathcal{M}^{(j)} \, y^ty}{\text{im}(\tau)}\right)} \big)\) as \(\text{im}(\tau) \to \infty\) and for some \(\alpha > 0\).
Then, the first two main results are the following
Theorem. Let \(r\) be any real number, \(m >0\) and \(\omega\) a multiplier system of weight \(r\) and index \(m\). Suppose that \(\big\{ \varphi_\gamma ;\; \gamma \in \mathrm{SL}(2,\mathbb{Z})^J\big\}\) is a parabolic cocycle of weight \(r\) and index \(m\) in \(\mathcal{P}_m\). then there is a unique meromorphic function, up to Jacobi forms, \(f: \mathcal{H} \times \mathbb{C}^1 \to \mathbb{C}\) such that \[ \big(f \big|_{\omega,k,\mathcal{M}^{(j)}} \gamma \big) (\tau,z) - f(\tau,z) = \varphi_\gamma(\tau,z) \] for all \(\gamma \in \mathrm{SL}(2,\mathbb{Z})^J\). This \(f\) is called a Jacobi integral of weight \(r\) and index \(m\) with period functions \(\big\{ \varphi_\gamma ;\; \gamma \in \mathrm{SL}(2,\mathbb{Z})^J\big\}\).
Put \(I={1 \; 0 \choose 0 \; 1}\), \(S={1 \; 1 \choose 0 \; 1}\) and \(T={0 \; -1 \choose 1 \; 0}\).
Theorem. Take a multiplier system \(\omega\) with \(\omega(-I)=1\). If a Jacobi integral \(f\) is even and periodic with respect to \(z\), i.e., \(P_{\big[-I,(0,0)\big]}(\tau,z) = P_{\big[I,(0,0)\big]}(\tau,z) = 0\), then the period functions \(P_{\big[T,(0,0)\big]}(\tau,z)\) and \(P_{\big[I,(1,0)\big]}(\tau,z)\) satisfy the following properties:
(1) \(P_{\big[T,(1,0)\big]} = P_{\big[T,(0,0)\big]}\),
(2) \(P_{\big[T,(0,0)\big]} + P_{\big[T,(0,0)\big]}\big|_{\omega,k,m}\big[T,(0,0)\big] = 0\),
(3) \(P_{\big[T,(0,0)\big]} + P_{\big[T,(0,0)\big]}\big|_{\omega,k,m}\big[ST,(0,0)\big] + P_{\big[T,(0,0)\big]}\big|_{\omega,k,m}\big[(ST)^2,(0,0)\big] = 0\),
(4) \(P_{\big[I,(1,0)\big]}\big|_{\omega,k,m}\big[T,(0,0)\big] = -P_{\big[T,(0,0)\big]} + P_{\big[T,(0,0)\big]}\big|_{\omega,k,m}\big[I,(0,-1)\big]\),
(5) \(P_{\big[I,(1,0)\big]} = P_{\big[T,(0,0)\big]} - P_{\big[T,(0,0)\big]}\big|_{\omega,k,m}\big[-I,(1,0)\big]\) and
(6) \(P_{\big[I,(1,0)\big]} + P_{\big[I,(1,0)\big]}\big|_{\omega,k,m}\big[-I,(1,0)\big] = 0\).
The third main result says basically: the set of all \(P \in \mathcal{P}_m\) satisfying the properties (2) and (3) above, i.e., \[ P + P\big|_{\omega,k,m}\big[T,(0,0)\big] = P + P\big|_{\omega,k,m}\big[ST,(0,0)\big] + P\big|_{\omega,k,m}\big[(ST)^2,(0,0)\big] = 0, \] is a generating set of all parabolic cocycles of \(\mathrm{SL}(2,\mathbb{Z})^J\).

MSC:

11F50 Jacobi forms
11F37 Forms of half-integer weight; nonholomorphic modular forms
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11F75 Cohomology of arithmetic groups

References:

[1] Bringmann K., Ono K.: The f(q) mock theta function conjecture and partition ranks. Invent. Math. 165(2), 243–266 (2006) · Zbl 1135.11057 · doi:10.1007/s00222-005-0493-5
[2] Bruinier J., Ono K.: Heegner divisors, L-functions and harmonic weak Maass forms. Ann. Math. (2) 172(3), 2135–2181 (2010) · Zbl 1244.11046 · doi:10.4007/annals.2010.172.2135
[3] Choie Y.: A short note on the full Jacobi group. Proc. Am. Math. Soc. 123(9), 2625–2628 (1995) · Zbl 0851.11033 · doi:10.1090/S0002-9939-1995-1260164-5
[4] Choie Y.: Half integral weight Jacobi forms and periods of modular forms. Manuscr. Math. 104(1), 123–133 (2001) · Zbl 0990.11030 · doi:10.1007/s002290170050
[5] Choie Y.: Correspondence among Eisenstein series $${E_{2,1}(\(\backslash\)tau,z), H_{\(\backslash\)frac{3}{2}}(\(\backslash\)tau)}$$ and E 2({\(\tau\)}). Manuscr. Math. 93(2), 177–187 (1997) · Zbl 0890.11017 · doi:10.1007/BF02677465
[6] Choie, Y.: Higher modular symbols and Hecke operators. (2011, in preparation)
[7] Choie Y., Kim H.: An analogy of Bol’s result on Jacobi forms and Siegel modular forms. J. Math. Anal. Appl. 257(1), 79–88 (2001) · Zbl 0982.11025 · doi:10.1006/jmaa.2000.7317
[8] Eichler M.: Grenzkreisgruppen und kettenbruchartige Algorithmen. Acta Arith. 11, 169–180 (1965) · Zbl 0148.32503
[9] Eichler M., Zagier D.: The Theory of Jacobi Forms. Progress in Mathematics, vol. 55. Birkhauser, Boston (1985) · Zbl 0554.10018
[10] Hilgert J., Mayer D.: Transfer operators and dynamical zeta functions for a class of lattice spin models . Commun. Math. Phys. 232(1), 19–58 (2002) · Zbl 1024.37013 · doi:10.1007/s00220-002-0746-8
[11] Hirzebruch F., Zagier D.: Intersection Numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus. Invent. Math. 36, 57–113 (1976) · Zbl 0332.14009 · doi:10.1007/BF01390005
[12] Kohnen, W., Zagier, D.: Modular forms with rational periods. Modular Forms (Durham, 1983), pp. 197–249. Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res. Horwood, Chichester (1984) · Zbl 0618.10019
[13] Knopp M.: Some new results on the Eichler cohomology of automorphic forms. Bull. Am. Math. Soc. 80, 607–632 (1974) · Zbl 0292.10022 · doi:10.1090/S0002-9904-1974-13520-2
[14] Knopp M.: Rademacher on J({\(\tau\)}), Poincare series of nonpositive weights and the Eichler cohomology. Not. Am. Math. Soc. 37(4), 385–393 (1990) · Zbl 0695.10021
[15] Knopp, M.: Recent developments in the theory of rational period functions. Number Theory (New York, 1985/1988). Lecture Notes in Math., vol. 1383, pp. 111–122. Springer, Berlin (1989)
[16] Lewis J., Zagier D.: Period functions for Maass wave forms. I. Ann. Math. (2) 153(1), 191–258 (2001) · Zbl 1061.11021 · doi:10.2307/2661374
[17] Manin, Y.: Remarks on modular symbols for Maass wave forms. Arxiv:0803.3270v2 (2008)
[18] Manin Y., Marcolli M.: Continued fractions, modular symbols, and noncommutative geometry. Selecta Math. (N.S.) 8(3), 475–521 (2002) · Zbl 1116.11033 · doi:10.1007/s00029-002-8113-3
[19] Mordell L.J.: The value of the definite integral $${\(\backslash\)int_{-\(\backslash\)infty}\^{\(\backslash\)infty} \(\backslash\)frac{e\^{at\^2+bt}}{e\^{ct}+d} dt}$$ . Q. J. Math. 68, 329–342 (1920) · JFM 59.0197.02
[20] Muhlenbruch T.: Hecke operators on period functions for the full modular group. Int. Math. Res. Not. 77, 4127–4145 (2004) · Zbl 1065.11031 · doi:10.1155/S1073792804143365
[21] Semikhatov A.M., Taormina A., Yu I.: Tipunin, higher-level Appell functions, modular transformations, and characters. Commun. Math. Phys. 255(2), 469–512 (2005) · Zbl 1114.11038 · doi:10.1007/s00220-004-1280-7
[22] Semikhatov A.M.: Higher string functions, higher-level Appell functions, and the logarithmic $${\(\backslash\)widehat{\(\backslash\)rm sl}(2)_k/{\(\backslash\)rm u}(1)}$$ CFT model. Commun. Math. Phys. 286(2), 559–592 (2009) · Zbl 1170.81039 · doi:10.1007/s00220-008-0677-0
[23] Skoruppa N.: Nils-Peter, explicit formulas for the Fourier coefficients of Jacobi and elliptic modular forms. Invent. Math. 102(3), 501–520 (1990) · Zbl 0715.11024 · doi:10.1007/BF01233438
[24] Zwegers S.: Rank-Crank type PDE’s for higher level Appell functions. Acta Arith. 144(3), 263–273 (2010) · Zbl 1253.11094 · doi:10.4064/aa144-3-4
[25] Zwegers, S.: Mock theta functions. Ph.D Thesis, Universiteit Utrecht (2002) · Zbl 1194.11058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.