×

Higher string functions, higher-level Appell functions, and the logarithmic \(\widehat{\mathrm{sl}}(2)_k/u(1)\) CFT model. (English) Zbl 1170.81039

Summary: We generalize the string functions \({\mathcal C}_{n,r}(\tau)\) associated with the coset \(\widehat{\text{sl}}(2)_k/u(1)\) to higher string functions \({\mathcal A}_{n,r}(\tau)\) and \({\mathcal B}_{n,r}(\tau)\) associated with the coset \(W(k)/u(1)\) of the \(W\)-algebra of the logarithmically extended \(\widehat{\text{sl}}(2)_k\) conformal field model with positive integer \(k\). The higher string functions occur in decomposing \(W(k)\) characters with respect to level-\(k\) theta and Appell functions and their derivatives (the characters are neither quasiperiodic nor holomorphic, and therefore cannot decompose with respect to only theta-functions). The decomposition coefficients, to be considered “logarithmic parafermionic characters,” are given by \({\mathcal A}_{n,r}(\tau)\), \({\mathcal B}_{n,r}(\tau)\), \({\mathcal C}_{n,r}(\tau)\), and by the triplet \({\mathcal W}(p)\)-algebra characters of the \((p=k+2,1)\) logarithmic model. We study the properties of \({\mathcal A}_{n,r}\) and \({\mathcal B}_{n,r}\), which nontrivially generalize those of the classic string functions \({\mathcal C}_{n,r}\), and evaluate the modular group representation generated from \({\mathcal A}_{n,r}(\tau)\) and \({\mathcal B}_{n,r}(\tau)\); its structure inherits some features of modular transformations of the higher-level Appell functions and the associated transcendental function \(\Phi\).

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
33C90 Applications of hypergeometric functions
17B81 Applications of Lie (super)algebras to physics, etc.
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations

References:

[1] Semikhatov A.M., Taormina A., Tipunin I.Yu. (2005) Higher-level Appell functions, modular transformations, and characters. Commun. Math. Phys. 255: 469–512 · Zbl 1114.11038 · doi:10.1007/s00220-004-1280-7
[2] Semikhatov A.M. (2007) Toward logarithmic extensions of \({{{\widehat{s\ell}2_k}}}\) conformal field models. Theor. Math. Phys. 153: 1597–1642 · Zbl 1146.81045 · doi:10.1007/s11232-007-0135-8
[3] Saleur H. (1992) Polymers and percolation in two-dimensions and twisted N = 2 supersymmetry. Nucl. Phys. B382: 486–531 · doi:10.1016/0550-3213(92)90657-W
[4] Gurarie V. (1993) Logarithmic operators in conformal field theory. Nucl. Phys. B410: 535 · Zbl 0990.81686 · doi:10.1016/0550-3213(93)90528-W
[5] Gaberdiel M.R., Kausch H.G. (1996) A rational logarithmic conformal field theory. Phys. Lett. B386: 131–137
[6] Gaberdiel M.R. (2003) An algebraic approach to logarithmic conformal field theory. Int. J. Mod. Phys. A18: 4593–4638 · Zbl 1055.81064
[7] Flohr M.A.I. (2003) Bits and pieces in logarithmic conformal field theory. Int. J. Mod. Phys. A18: 4497–4592 · Zbl 1062.81125
[8] Fjelstad J., Fuchs J., Hwang S., Semikhatov A.M., Tipunin I.Yu. (2002) Logarithmic conformal field theories via logarithmic deformations. Nucl. Phys. B633: 379–413 · Zbl 0995.81129 · doi:10.1016/S0550-3213(02)00220-1
[9] Lesage F., Mathieu P., Rasmussen J., Saleur H. (2004) Logarithmic lift of the su(2)/2 model. Nucl. Phys. B686: 313–346 · Zbl 1107.81328 · doi:10.1016/j.nuclphysb.2004.02.039
[10] Carqueville N., Flohr M. (2006) Nonmeromorphic operator product expansion and C 2-cofiniteness for a family of W-algebras. J. Phys. A39: 951–966 · Zbl 1081.17015
[11] Flohr M., Gaberdiel M.R. (2006) Logarithmic torus amplitudes. J. Phys. A39: 1955–1968 · Zbl 1085.81053
[12] Schomerus V., Saleur H. (2006) The GL(1|1) WZW model: from supergeometry to logarithmic conformal field theory. Nucl. Phys. B734: 221–245 · Zbl 1192.81185 · doi:10.1016/j.nuclphysb.2005.11.013
[13] Pearce P.A., Rasmussen J., Zuber J.-B. (2006) Logarithmic minimal models. J. Stat Mech. 0611: P017
[14] Flohr M., Grabow C., Koehn M. (2007) Fermionic expressions for the characters of c(p,1) logarithmic conformal field theories. Nud. Phys. B768(3): 263–276 · Zbl 1117.81122 · doi:10.1016/j.nuclphysb.2007.01.025
[15] Read N., Saleur H. (2007) Associative-algebraic approach to logarithmic conformal field theories. Nud. Phys. B 777: 316 · Zbl 1200.81136 · doi:10.1016/j.nuclphysb.2007.03.033
[16] Warnaar S.O. (2007) Proof of the Flohr–Grabow–Koehn conjectures for characters of logarithmic conformal field theory. J. Phys. A40: 12243–12254 · Zbl 1128.81027
[17] Quella T., Schomerus V. (2007) Free fermion resolution of supergroup WZNW models. JHEP 0709: 085 · doi:10.1088/1126-6708/2007/09/085
[18] Gaberdiel M.R., Runkel I. (2008) From boundary to bulk in logarithmic CFT. J. Phys. A41: 075402 · Zbl 1134.81044
[19] Huang, Y.-Z., Lepowsky, J., Zhang, L.: A logarithmic generalization of tensor product theory for modules for a vertex operator algebra. Int. J. Math., 2006 · Zbl 1197.17017
[20] Fuchs, J.: On non-semisimple fusion rules and tensor categories. http://ariXiv.org/list/hep-th/0602051 , 2006
[21] Semikhatov, A.M.: Factorizable ribbon quantum groups in logarithmic conformal field theories. Theor. Math. Phys. 154, 433–453 (2008) http://ariXiv.org/abs/0705.4267v2[hep-th] , 2007 · Zbl 1166.81024
[22] Flohr, M.: On modular invariant partition functions of conformal field theories with logarithmic operators. Int. J. Mod. Phys. A11, 4147–4172 (1996) On fusion rules in logarithmic conformal field theories, Int. J. Mod. Phys. A12, 1943–1958 (1997) · Zbl 1044.81713
[23] Fuchs J., Hwang S., Semikhatov A.M., Tipunin I.Yu. (2004) Nonsemisimple fusion algebras and the Verlinde formula. Commun. Math. Phys. 247: 713–742 · Zbl 1063.81062 · doi:10.1007/s00220-004-1058-y
[24] Feigin B.L., Gainutdinov A.M., Semikhatov A.M., Tipunin I.Yu. (2006) Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center. Commun. Math. Phys. 265: 47–93 · Zbl 1107.81044 · doi:10.1007/s00220-006-1551-6
[25] Kac V., Peterson D. (1984) Infinite dimensional Lie algebras, theta functions and modular forms. Adv. Math. 53: 125–264 · Zbl 0584.17007 · doi:10.1016/0001-8708(84)90032-X
[26] Jimbo M., Miwa T. (1984) Irreducible decomposition of fundamental modules for \({{A^{(1)}_l}}\) and \({{C^{(1)}_l}}\) , and Hecke modular forms. Adv. Stud. Pure Math. 4: 97–119
[27] Fateev V.A., Zamolodchikov A.B. (1985) Nonlocal (parafermion) currents in two-dimensional quantum field theory and self-dual critical points in Z N -symmetric statistical systems. Sov. Phys. JETP 82: 215–225
[28] Jacob P., Mathieu P. (2000) Parafermionic character formulae. Nucl. Phys. B587: 514–542 · Zbl 1043.81567 · doi:10.1016/S0550-3213(00)00454-5
[29] Distler J., Qiu Z. (1990) BRS cohomology and a Feigin–Fuchs representation of Kac–Moody and parafermionic theories. Nucl. Phys. B336: 533–546 · doi:10.1016/0550-3213(90)90441-F
[30] Jayaraman T., Narain K.S., Sarmadi M.H. (1990) SU(2) k WZW model and \({{\mathbb {Z}_k}}\) parafermion models on the torus. Nucl. Phys. B343: 418–449 · doi:10.1016/0550-3213(90)90477-U
[31] Nemeschansky D. (1991) Feigin–Fuchs representation of string functions. Nucl. Phys. B363: 665–678 · doi:10.1016/0550-3213(91)80038-N
[32] Lepowsky, J., Primc, M.: Structure of the standard modules of the affine Lie algebras \({{A_1^{(1)}}}\) . Contemp. Math. 46, Providence, RI: Amer. Math. Soc. 1985 · Zbl 0569.17007
[33] Feigin B.L., Gainutdinov A.M., Semikhatov A.M., Tipunin I.Yu. (2006) Logarithmic extensions of minimal models: characters and modular transformations. Nucl. Phys. B757: 303–343 · Zbl 1116.81059 · doi:10.1016/j.nuclphysb.2006.09.019
[34] Kausch H.G. (1991) Extended conformal algebras generated by a multiplet of primary fields. Phys. Lett. B259: 448
[35] Gaberdiel M.R., Kausch H.G. (1999) A local logarithmic conformal field theory. Nucl. Phys. B538: 631–658 · Zbl 0948.81632 · doi:10.1016/S0550-3213(98)00701-9
[36] Adamović D., Milas A. (2008) On the triplet vertex algebra \({{\fancyscript{W}(p)}}\) . Adv. in Math. 217: 2664–2699 · Zbl 1177.17017
[37] Polishchuk, A.: M.P. Appell’s function and vector bundles of rank 2 on elliptic curves. http://arXiv.org/list/math.AG/9810084 , 1998
[38] Kac V.G., Wakimoto M. (2001) Integrable highest weight modules over affine superalgebras and Appell’s function. Commun. Math. Phys. 215: 631–682 · Zbl 0980.17002 · doi:10.1007/s002200000315
[39] Bowcock P., Feigin B.L., Semikhatov A.M., Taormina A. (2000) \({{{\widehat{s\ell}(2|1)}}}\) and \({{\widehat {D}(2|1;\alpha)}}\) as vertex operator extensions of dual affine s2 algebras. Commun. Math. Phys. 214: 495–545 · Zbl 0980.17016 · doi:10.1007/PL00005536
[40] Schilling A., Warnaar S.O. (2002) Conjugate Bailey pairs. Contemp. Math. 297: 227–255 · Zbl 1058.82006
[41] Verlinde E. (1988) Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys. B300: 360 · Zbl 1180.81120 · doi:10.1016/0550-3213(88)90603-7
[42] Flohr, M., Knuth, H.: On Verlinde-like formulas in c p,1 logarithmic conformal field theories. http://arXiv/org/abs/0705.0545v1[math-ph] , 2007
[43] Kedem R., Klassen T.R., McCoy B.M., Melzer E. (1993) Fermionic sum representations for conformal field theory characters. Phys. Lett. B307: 68–76 · Zbl 0973.81530
[44] Bouwknegt P., Ludwig A., Schoutens K. (1995) Spinon basis for higher level SU(2) WZW models. Phys. Lett. B359: 304–312
[45] Arakawa, T., Nakanishi, T., Oshima, K., Tsuchiya, A.: Spectral decomposition of path space in solvable lattice model. Commun. Math. Phys. 181, 157–182 (1996) Nakayashiki, A., Yamada, Y.: Crystallizing the spinon basis. Commun. Math. Phys. 178, 179–200 (1996) · Zbl 0876.17034
[46] Ardonne E., Bouwknegt P., Dawson P. (2003) K-matrices for 2D conformal field theories. Nucl. Phys. B660: 473–531 · Zbl 1037.81084
[47] Feigin, B.L., Semikhatov, A.M., Sirota, V.A., Tipunin, I.Yu.: Resolutions and characters of irreducible represntations of the N = 2 superconformal algebra. Nucl. Phys. B536 [PM], 617–656 (1999) · Zbl 0948.81559
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.