×

Binding of polarons and atoms at threshold. (English) Zbl 1250.82046

Summary: If the polaron coupling constant \(\alpha \) is large enough, bipolarons or multi-polarons will form. When passing through the critical \(\alpha _{c }\) from above, does the radius of the system simply get arbitrarily large or does it reach a maximum and then explode? We prove that it is always the latter. We also prove the analogous statement for the Pekar-Tomasevich (PT) approximation to the energy, in which case there is a solution to the PT equation at \(\alpha _{c }\). Similarly, we show that the same phenomenon occurs for atoms, e.g., helium, at the critical value of the nuclear charge. Our proofs rely only on energy estimates, not on a detailed analysis of the Schrödinger equation, and are very general. They use the fact that the Coulomb repulsion decays like \(1/r\), while ‘uncertainty principle’ localization energies decay more rapidly, as \(1/r ^{2}\).

MSC:

82D25 Statistical mechanics of crystals

References:

[1] Benguria R.D., Bley G.A.: Exact asymptotic behavior of the Pekar-Tomasevich functional. J. Math. Phys. 52, 052110 (2011) · Zbl 1317.82052 · doi:10.1063/1.3587117
[2] Benguria, R.D., Frank, R.L., Lieb, E.H.: In preparation
[3] Bethe H.A.: Berechnung der Elektronenaffinität des Wasserstoffs. Z. Physik 57, 815 (1929) · JFM 55.0554.20 · doi:10.1007/BF01340659
[4] Donsker M., Varadhan S.R.S.: Asymptotics for the polaron. Comm. Pure Appl. Math. 36, 505–528 (1983) · Zbl 0538.60081 · doi:10.1002/cpa.3160360408
[5] Frank R.L., Lieb E.H., Seiringer R., Thomas L.E.: Bi-polaron and N-polaron binding energies. Phys. Rev. Lett. 104, 210402 (2010) · doi:10.1103/PhysRevLett.104.210402
[6] Frank R.L., Lieb E.H., Seiringer R., Thomas L.E.: Stability and Absence of Binding for Multi-Polaron Systems. Publ. Math. IHES 113(1), 39–67 (2011) · Zbl 1227.82083
[7] Fröhlich H.: Theory of electrical breakdown in ionic crystals. Proc. R. Soc. Lond. A 160, 230–241 (1937) · doi:10.1098/rspa.1937.0106
[8] Gerlach B., Löwen H.: Absence of phonon-induced localization for the free optical polaron and the corresponding Wannier exciton-phonon system. Phys. Rev. B 37, 8042–8047 (1988) · doi:10.1103/PhysRevB.37.8042
[9] Griesemer M., Møller J.S.: Bounds on the minimal energy of translation invariant N-polaron systems. Commun. Math. Phys. 297, 283–297 (2010) · Zbl 1204.82035 · doi:10.1007/s00220-010-1013-z
[10] Hoffmann-Ostenhof M., Hoffmann-Ostenhof T.: Absence of an L 2-eigenfunction at the bottom of the spectrum of the Hamiltonian of the hydrogen negative ion in the triplet S-sector. J. Phys. A 17(17), 3321–3325 (1984) · Zbl 0559.35081 · doi:10.1088/0305-4470/17/17/009
[11] Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Simon B.: A multiparticle Coulomb system with bound state at threshold. J. Phys. A 16, 1125–1131 (1983) · Zbl 0519.35024 · doi:10.1088/0305-4470/16/6/007
[12] Lewin M.: Geometric methods for nonlinear many-body quantum systems. J. Funct. Anal. 260, 3535–3595 (2011) · Zbl 1216.81180 · doi:10.1016/j.jfa.2010.11.017
[13] Lieb E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Studies in Appl. Math. 57(2), 93–105 (1976/77)
[14] Lieb, E.H., Loss, M.: Analysis, Volume 14 of Graduate Studies in Mathematics. Providence, RI: Amer. Math. Soc., second edition, 2001 · Zbl 1044.81133
[15] Lieb E.H., Seiringer R.: The stability of matter in quantum mechanics. Cambridge Univ. Press, Cambridge (2010) · Zbl 1179.81004
[16] Lieb, E.H., Thomas, L.E.: Exact ground state energy of the strong-coupling polaron. Commun. Math. Phys. 183(3), 511–519 (1997); Erratum: ibid. 188(2), 499–500 (1997) · Zbl 0874.60095
[17] Miyake S.J.: Strong coupling limit of the polaron ground state. J. Phys. Soc. Jpn. 38, 181–182 (1975) · doi:10.1143/JPSJ.38.181
[18] Miyao T., Spohn H.: The bipolaron in the strong coupling limit. Ann. Henri Poincaré 8, 1333–1370 (2007) · Zbl 1206.82121 · doi:10.1007/s00023-007-0337-5
[19] Pekar, S.I.: Research in electron theory of crystals. Washington, DC: United States Atomic Energy Commission, 1963
[20] Pekar S.I., Tomasevich O.F.: Theory of F centers. Zh. Eksp. Teor. Fys. 21, 1218–1222 (1951)
[21] Smondyrev, M.A., Fomin, V.M.: Pekar-Fröhlich bipolarons. In: Polarons and applications, Proceedings in Nonlinear Science, V.D. Lakhno, ed., New York: Wiley, 1994
[22] Smondyrev M.A., Verbist G., Peeters F.M., Devreese J.T.: Stability of multi polaron matter. Phys. Rev. B 47, 2596–2601 (1993) · doi:10.1103/PhysRevB.47.2596
[23] Suprun, S.G., Moizhes, B.Ya.: Electron correlation effect in pekar bipolaron formation, Fiz. Tverd. Tela 24, 1571 (1982) (English translation: Sov. Phys. Semicond. 16, 700 (1982))
[24] Verbist G., Peeters F.M., Devreese J.T.: Large bipolarons in two and three dimensions. Phys. Rev. B 43, 2712–2720 (1991) · doi:10.1103/PhysRevB.43.2712
[25] Verbist G., Smondyrev M.A., Peeters F.M., Devreese J.T.: Strong-coupling analysis of large bipolarons in two and three dimensions. Phys. Rev. B 45, 5262–5269 (1992) · doi:10.1103/PhysRevB.45.5262
[26] Zhislin G.M.: A study of the spectrum of the Schrödinger operator for a system of several particles. (Russian) Trudy Moskov. Mat. Obsc. 9, 81–120 (1960)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.