×

Geometric methods for nonlinear many-body quantum systems. (English) Zbl 1216.81180

The author presents a geometric formalism able to handle particular nonlinear problems appearing in quantum mechanics of many particle systems, specially when some of these particles are allowed to escape at infinity. For that purpose a suitable weak topology is introduced leading to the notion of geometric convergence involving state spaces with variable dimensions. As an application, an elegant proof of the HVZ (Hunziker-Van Winter-Zhislin) theorem is provided. Links of this geometric convergence notion with the geometrical localization method introduced by Dereziński and Gerard are then clarified. Several applications are finally provided: the finite-rank approximation (known as Multi Configuration Approximation in quantum chemistry), the analysis of some translation-invariant systems involving non-linear effective interactions (appearing in low energy Nuclear Physics) and the multi-polaron system, an effective model in electron-phonon interaction.

MSC:

81V70 Many-body theory; quantum Hall effect
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

References:

[1] Ammari, Z., Scattering theory for a class of fermionic Pauli-Fierz models, J. Funct. Anal., 208, 2, 302-359 (2004) · Zbl 1050.81069
[2] Bach, V., Error bound for the Hartree-Fock energy of atoms and molecules, Comm. Math. Phys., 147, 3, 527-548 (1992) · Zbl 0771.46038
[3] Bach, V.; Lieb, E. H.; Loss, M.; Solovej, J. P., There are no unfilled shells in unrestricted Hartree-Fock theory, Phys. Rev. Lett., 72, 19, 2981-2983 (1994)
[4] Bach, V.; Lieb, E. H.; Solovej, J. P., Generalized Hartree-Fock theory and the Hubbard model, J. Stat. Phys., 76, 1-2, 3-89 (1994) · Zbl 0839.60095
[5] Bratelli, O.; Robinson, D. W., Operator Algebras and Quantum Statistical Mechanics. 1: \(C^\ast \)- and \(W^\ast \)-Algebras. Symmetry Groups. Decomposition of States, Texts Monogr. in Phys. (2002), Springer
[6] Bratelli, O.; Robinson, D. W., Operator Algebras and Quantum Statistical Mechanics 2: Equilibrium States. Models in Quantum Statistical Mechanics, Texts Monogr. in Phys. (2002), Springer
[7] Brezis, H.; Coron, J.-M., Convergence of solutions of \(H\)-systems or how to blow bubbles, Arch. Ration. Mech. Anal., 89, 1, 21-56 (1985) · Zbl 0584.49024
[8] Brézis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36, 4, 437-477 (1983) · Zbl 0541.35029
[9] Cycon, H. L.; Froese, R. G.; Kirsch, W.; Simon, B., Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Texts Monogr. in Phys. (1987), Springer-Verlag: Springer-Verlag Berlin, study edition · Zbl 0619.47005
[10] Dechargé, J.; Gogny, D., Hartree-Fock-Bogolyubov calculations with the \(D1\) effective interaction on spherical nuclei, Phys. Rev. C, 21, 4, 1568-1593 (1980)
[11] Deift, P.; Simon, B., A time-dependent approach to the completeness of multiparticle quantum systems, Comm. Pure Appl. Math., 30, 5, 573-583 (1977) · Zbl 0354.47004
[12] dellʼAntonio, G., On the limits of sequences of normal states, Comm. Pure Appl. Math., 20, 413 (1967) · Zbl 0148.37901
[13] Dereziński, J.; Gérard, C., Asymptotic completeness in quantum field theory. Massive Pauli-Fierz Hamiltonians, Rev. Math. Phys., 11, 4, 383-450 (1999) · Zbl 1044.81556
[14] Donsker, M. D.; Varadhan, S. R.S., Asymptotics for the polaron, Comm. Pure Appl. Math., 36, 4, 505-528 (1983) · Zbl 0538.60081
[15] Emin, D., Formation, motion, and high-temperature superconductivity of large bipolarons, Phys. Rev. Lett., 62, 13, 1544-1547 (1989)
[16] Enss, V., A note on Hunzikerʼs theorem, Comm. Math. Phys., 52, 233-238 (1977)
[17] Frank, R. L.; Lieb, E. H.; Seiringer, R.; Thomas, L. E., Stability and absence of binding for multi-polaron systems (2010), preprint
[18] Frank, R. L.; Lieb, E. H.; Seiringer, R.; Thomas, L. E., Bi-polaron and \(N\)-polaron binding energies, Phys. Rev. Lett., 104, 210402 (2010)
[19] Friesecke, G., The multiconfiguration equations for atoms and molecules: charge quantization and existence of solutions, Arch. Ration. Mech. Anal., 169, 1, 35-71 (2003) · Zbl 1035.81069
[20] Fröhlich, H., Theory of electrical breakdown in ionic crystals, Roy. Soc. London Proc. Ser. A, 160, 230-241 (1937)
[21] Fröhlich, H., Electrons in lattice fields, Adv. Phys., 3, 325-361 (1954) · Zbl 0056.23703
[22] Griesemer, M.; Møller, J. S., Bounds on the minimal energy of translation invariant \(n\)-polaron systems, Comm. Math. Phys., 297, 1, 283-297 (2010) · Zbl 1204.82035
[23] Hainzl, C.; Lewin, M.; Solovej, J. P., The thermodynamic limit of quantum Coulomb systems. Part II. Applications, Adv. Math., 221, 488-546 (2009) · Zbl 1165.81042
[24] Hoffmann-Ostenhof, M.; Hoffmann-Ostenhof, T., Schrödinger inequalities and asymptotic behavior of the electron density of atoms and molecules, Phys. Rev. A, 16, 5, 1782-1785 (1977)
[25] Hunziker, W., On the spectra of Schrödinger multiparticle Hamiltonians, Helv. Phys. Acta, 39, 451-462 (1966) · Zbl 0141.44701
[26] Hunziker, W.; Sigal, I. M., The quantum \(N\)-body problem, J. Math. Phys., 41, 6, 3448-3510 (2000) · Zbl 0981.81026
[27] Jörgens, K.; Weidmann, J., Spectral Properties of Hamiltonian Operators, Lecture Notes in Math., vol. 313 (1973), Springer-Verlag: Springer-Verlag Berlin · Zbl 0248.35002
[28] Kohn, W.; Sham, L. J., Self-consistent equations including exchange and correlation effects, Phys. Rev. (2), 140, A1133-A1138 (1965)
[29] Lenzmann, E.; Lewin, M., Minimizers for the Hartree-Fock-Bogoliubov theory of neutron stars and white dwarfs, Duke Math. J., 152, 2, 257-315 (2010) · Zbl 1202.49013
[30] Lewin, M., Solutions of the multiconfiguration equations in quantum chemistry, Arch. Ration. Mech. Anal., 171, 1, 83-114 (2004) · Zbl 1063.81102
[31] Lieb, E. H., Existence and uniqueness of the minimizing solution of Choquardʼs nonlinear equation, Stud. Appl. Math., 57, 93-105 (1977) · Zbl 0369.35022
[32] Lieb, E. H., Variational principle for many-fermion systems, Phys. Rev. Lett., 46, 7, 457-459 (1981)
[33] Lieb, E. H., On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math., 74, 3, 441-448 (1983) · Zbl 0538.35058
[34] Lieb, E. H.; Loss, M., Analysis, Grad. Stud. Math., vol. 14 (2001), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0966.26002
[35] Lieb, E. H.; Simon, B., The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys., 53, 3, 185-194 (1977)
[36] Lieb, E. H.; Thirring, W. E., Universal nature of Van Der Waals forces for Coulomb systems, Phys. Rev. A, 34, 40-46 (1986)
[37] Lieb, E. H.; Thomas, L. E., Exact ground state energy of the strong-coupling polaron, Comm. Math. Phys., 183, 3, 511-519 (1997) · Zbl 0874.60095
[38] Lions, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case, Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 2, 109-149 (1984) · Zbl 0541.49009
[39] Lions, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case, Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 4, 223-283 (1984) · Zbl 0704.49004
[40] Lions, P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoam., 1, 1, 145-201 (1985) · Zbl 0704.49005
[41] Lions, P.-L., The concentration-compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoam., 1, 2, 45-121 (1985) · Zbl 0704.49006
[42] Lions, P.-L., Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys., 109, 1, 33-97 (1987) · Zbl 0618.35111
[43] Löwdin, P.-O., Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction, Phys. Rev. (2), 97, 1474-1489 (1955) · Zbl 0065.44907
[44] Miyao, T.; Spohn, H., The bipolaron in the strong coupling limit, Ann. Henri Poincaré, 8, 1333-1370 (2007) · Zbl 1206.82121
[45] Morgan, J. D., Schrödinger operators whose potentials have separated singularities, J. Operator Theory, 1, 1, 109-115 (1979) · Zbl 0439.35022
[46] Morgan, J. D.; Simon, B., Behavior of molecular potential energy curves for large nuclear separations, Int. J. Quantum Chem., 17, 6, 1143-1166 (1980)
[47] S. Pekar, Research in electron theory of crystals, Tech. Rep. AEC-tr-5575, United States Atomic Energy Commission, Washington, DC, 1963.; S. Pekar, Research in electron theory of crystals, Tech. Rep. AEC-tr-5575, United States Atomic Energy Commission, Washington, DC, 1963.
[48] Pekar, S.; Tomasevich, O., Theory of \(F\) centers, Zh. Eksp. Teor. Fys., 21, 1218-1222 (1951)
[49] Pillet, N.; Berger, J.-F.; Caurier, E., Variational multiparticle-multihole configuration mixing method applied to pairing correlations in nuclei, Phys. Rev. C, 78, 2, 024305 (2008)
[50] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. I. Functional Analysis (1972), Academic Press · Zbl 0242.46001
[51] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness (1975), Academic Press: Academic Press New York · Zbl 0308.47002
[52] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. IV. Analysis of Operators (1978), Academic Press: Academic Press New York · Zbl 0401.47001
[53] Sacks, J.; Uhlenbeck, K., The existence of minimal immersions of 2-spheres, Ann. of Math. (2), 113, 1, 1-24 (1981) · Zbl 0462.58014
[54] Sigal, I. M., Geometric methods in the quantum many-body problem. Non existence of very negative ions, Comm. Math. Phys., 85, 309-324 (1982) · Zbl 0503.47041
[55] Sigal, I. M., Geometric parametrices and the many-body Birman-Schwinger principle, Duke Math. J., 50, 2, 517-537 (1983) · Zbl 0543.47044
[56] Sigal, I. M., How many electrons can a nucleus bind?, Ann. Physics, 157, 307-320 (1984)
[57] Simon, B., Geometric methods in multiparticle quantum systems, Comm. Math. Phys., 55, 259-274 (1977) · Zbl 0413.47008
[58] Simon, B., Trace Ideals and Their Applications, London Math. Soc. Lecture Note Ser., vol. 35 (1979), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0423.47001
[59] Smondyrev, M.; Fomin, V., Pekar-Fröhlich bipolarons, (Lakhno, V., Polarons and Applications, Proceedings in Nonlinear Science (1994), Wiley)
[60] Struwe, M., A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187, 4, 511-517 (1984) · Zbl 0535.35025
[61] Struwe, M., Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems (2008), Springer: Springer New York · Zbl 1284.49004
[62] Van Winter, C., Theory of finite systems of particles. I. The Green function, Mat.-Fys. Skr. Danske Vid. Selsk., 2, 8 (1964) · Zbl 0122.22403
[63] Vautherin, D.; Brink, D. M., Hartree-Fock calculations with Skyrmeʼs interaction. I. Spherical nuclei, Phys. Rev. C, 5, 3, 626-647 (1972)
[64] Verbist, G.; Peeters, F. M.; Devreese, J. T., Large bipolarons in two and three dimensions, Phys. Rev. B, 43, 4, 2712-2720 (1991)
[65] Verbist, G.; Smondyrev, M. A.; Peeters, F. M.; Devreese, J. T., Strong-coupling analysis of large bipolarons in two and three dimensions, Phys. Rev. B, 45, 5262-5269 (1992)
[66] Zhislin, G. M., Discussion of the spectrum of Schrödinger operators for systems of many particles, Tr. Mosk. Mat. Obs., 9, 81-120 (1960), (in Russian)
[67] Zhislin, G. M.; Sigalov, A. G., The spectrum of the energy operator for atoms with fixed nuclei on subspaces corresponding to irreducible representations of the group of permutations, Izv. Akad. Nauk SSSR Ser. Mat., 29, 835-860 (1965) · Zbl 0138.39304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.