×

Isoperimetric-type inequalities on constant curvature manifolds. (English) Zbl 1250.58008

Let \((M,g)\), \((M^\prime, g^\prime)\) be two complete \(n\)-dimensional Riemannian manifolds equipped with their volume measures vol and vol\(^\prime\). For given two probability measures \(\mu=\varrho_0\text{vol}\) and \(\nu=\varrho_1\text{vol}^\prime\) on \(M\) and \(M^\prime\), respectively, a Borel map \(\Phi: M\to M^\prime\) is said to be a transport map if \(\Phi_\sharp\mu=\nu\). For a given function \(c: M\times M^\prime\to \mathbb R\), called a cost, a transport map \(\Phi\) is said to be an optimal transport map if it minimizes the total cost functional \(\mathcal{T}(\Phi)=\int_Mc(x, \Phi(x))d\mu(x).\) The authors, using the optimal transport method on Riemannian manifolds together with a suitably adopted Gromov’s proof of the isoperimetric inequality in the Euclidean space, obtain an isoperimetric-type inequality on simply connected manifolds of constant sectional curvature.

MSC:

58E35 Variational inequalities (global problems) in infinite-dimensional spaces
Full Text: DOI

References:

[1] DOI: 10.1002/cpa.3160440402 · Zbl 0738.46011 · doi:10.1002/cpa.3160440402
[2] DOI: 10.1002/cpa.3160440809 · Zbl 0761.35028 · doi:10.1002/cpa.3160440809
[3] DOI: 10.1090/S0894-0347-1992-1124980-8 · doi:10.1090/S0894-0347-1992-1124980-8
[4] C.R. Acad. Sci. Paris Sér. I Math. 329 pp 789– (1999) · Zbl 0945.26026 · doi:10.1016/S0764-4442(99)90008-3
[5] DOI: 10.1007/s002220100160 · Zbl 1026.58018 · doi:10.1007/s002220100160
[6] DOI: 10.1007/BF00380505 · Zbl 0846.73054 · doi:10.1007/BF00380505
[7] DOI: 10.1007/s11856-010-0001-5 · Zbl 1198.49044 · doi:10.1007/s11856-010-0001-5
[8] DOI: 10.1137/060665555 · Zbl 1132.28322 · doi:10.1137/060665555
[9] DOI: 10.1007/s00222-010-0261-z · Zbl 1196.49033 · doi:10.1007/s00222-010-0261-z
[10] DOI: 10.1215/S0012-7094-95-08013-2 · Zbl 0873.28009 · doi:10.1215/S0012-7094-95-08013-2
[11] DOI: 10.1006/aima.1997.1634 · Zbl 0901.49012 · doi:10.1006/aima.1997.1634
[12] DOI: 10.1007/PL00001679 · Zbl 1011.58009 · doi:10.1007/PL00001679
[13] DOI: 10.1002/mana.19480010202 · Zbl 0030.07602 · doi:10.1002/mana.19480010202
[14] DOI: 10.1002/mana.19490020308 · Zbl 0041.51001 · doi:10.1002/mana.19490020308
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.