×

Microstructures with finite surface energy: The two-well problem. (English) Zbl 0846.73054

Summary: We study solutions of the two-well problem, i.e., maps which satisfy \(\nabla u\in SO(n)A\cup SO(n)B\) a.e. in \(\Omega\subset \mathbb{R}^n\), where \(A\) and \(B\) are \(n\times n\) matrices with positive determinants. This problem arises in the study of microstructure in solid-solid phase transitions. Under the additional hypothesis that the set \(E\) where the gradient lies in \(SO(n)A\) has finite perimeter, we show that \(u\) is locally only a function of one variable and that the boundary of \(E\) consists of (subsets of) hyperplanes which extend to \(\partial\Omega\) and which do not intersect in \(\Omega\). This may not be the case if the assumption on \(E\) is dropped. We also discuss applications of this result to magnetostrictive materials.

MSC:

74A60 Micromechanical theories
74M25 Micromechanics of solids
74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics
82D40 Statistical mechanics of magnetic materials
Full Text: DOI

References:

[1] L. Ambrosio, S. Mortola & V. M. Tortorelli, Functionals with linear growth defined on vector-valued BV functions, J Math. Pures Appl. 70 (1991), 269-323. · Zbl 0662.49007
[2] G. Anzellotti, S. Baldo & A. Visintin, Asymptotic behaviour of the Landau-Lifshitz model of ferromagnetism, Appl. Math. Opt. 23 (1991), 171-192. · Zbl 0746.49032 · doi:10.1007/BF01442396
[3] P. Aviles & Y. Giga, A mathematical problem related to the physical theory of liquid crystals, Proc. Centre. Math. Analysis, Australian Nat. Univ. (eds. J. Hutchinson & L. Simon) 12 (1987), 1-16.
[4] P. Aviles & Y. Giga, Singularities and rank-1 properties of Hessian matrices, Duke Math. J. 58 (1989), 441-467. · Zbl 0711.49062 · doi:10.1215/S0012-7094-89-05820-1
[5] L. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand, 1966. · Zbl 0138.06002
[6] J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977), 337-403. · Zbl 0368.73040 · doi:10.1007/BF00279992
[7] J. M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter, Proc. R. Soc. Edinburgh A 88 (1981), 315-328. · Zbl 0478.46032
[8] J. M. Ball, Sets of gradients with no rank-one connection, J. Math. Pures Appl. 69 (1990), 241-259. · Zbl 0644.49011
[9] J. M. Ball & R. D. James, Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal. 100 (1987), 13-52. · Zbl 0629.49020 · doi:10.1007/BF00281246
[10] J. M. Ball & R. D. James, A characterization of plane strain, Proc. R. Soc. London A 432 (1991), 93-99. · Zbl 0721.73004
[11] J. M. Ball & R. D. James, Proposed experimental tests of a theory of fine microstructure and the two-well problem, Phil. Trans. R. Soc. Lond. A 338 (1992), 389-450. · Zbl 0758.73009 · doi:10.1098/rsta.1992.0013
[12] B. Bojarski, Generalized solutions of a system of first order differential equations of elliptic type with discontinuous coefficients (in Russian), Mat. Sb. 43 (1957), 451-503.
[13] B. Bojarski & T. Iwaniec, Another approach to the Liouville theorem, Math. Nachr. 107 (1982), 253-262. · Zbl 0527.30013 · doi:10.1002/mana.19821070120
[14] B. Bojarski & T. Iwaniec, Analytical foundations of the theory of quasiconformal mappings in ? n , Ann. Acad. Sci. Fenn. Ser. A Math. 8 (1983), 257-324. · Zbl 0548.30016
[15] W. F. Brown, Magneto-elastic interactions, Springer, 1966.
[16] A. Cellina, On minima of a functional of the gradient: necessary conditions, Nonlin. Anal., Theory Meths. Appls. 20 (1993), 337-341. · Zbl 0784.49021 · doi:10.1016/0362-546X(93)90137-H
[17] A. Cellina, On minima of a functional of the gradient: sufficient conditions, Nonlin. Anal., Theory Meths. Appls. 20 (1993), 343-347. · Zbl 0784.49022 · doi:10.1016/0362-546X(93)90138-I
[18] M. Chipot & D. Kinderlehrer, Equilibrium configurations of crystals, Arch. Rational Mech. Anal. 103 (1988), 237-277. · Zbl 0673.73012 · doi:10.1007/BF00251759
[19] A. De Simone, Energy minimizers for large ferromagnetic bodies, Arch. Rational Mech. Anal. 125 (1993), 99-143. · Zbl 0811.49030 · doi:10.1007/BF00376811
[20] L. C. Evans & R. F. Gariepy, Measure theory and fine properties of functions, CRC Publ, 1992. · Zbl 0804.28001
[21] H. Federer, Geometric measure theory, Springer, 1969. · Zbl 0176.00801
[22] I. Fonseca, Phase transitions for elastic solid materials. Arch. Rational Mech. Anal. 107 (1989), 195-223. · Zbl 0751.73005 · doi:10.1007/BF01789609
[23] I. Fonseca & W. Gangbo, Local invertibility of Sobolev functions, SIAM J. Math. Anal. 26 (1995), 280-304. · Zbl 0839.30018 · doi:10.1137/S0036141093257416
[24] G. Friesecke, A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems, Proc. R. Soc. Edinburgh A 124 (1994), 437-471. · Zbl 0809.49017
[25] M. Giaquinta, G. Modica & J. Sou?ek, Variational problems for maps of bounded variation with values in S1, Calc. Vor. 1 (1993), 87-121. · Zbl 0810.49040 · doi:10.1007/BF02163266
[26] E. Giusti, Minimal surfaces and functions of bounded variation, Birkhäuser, 1984. · Zbl 0545.49018
[27] M. Gromov, Partial differential relations, Springer, 1986. · Zbl 0651.53001
[28] A. Hubert, Zur Theorie der zweiphasigen Domänenstrukturen in Supraleitern und Ferromagneten, Phys. Status Solidi 24 (1967), 669-682. · doi:10.1002/pssb.19670240229
[29] R. D. James & D. Kinderlehrer, Theory of diffusionless phase transitions, in: PDEs and continuum models for phase transitions (eds. M. Rascle, D. Serre & M. Slemrod), Lect. Notes Phys. 344, Springer, 1989. · Zbl 0991.74504
[30] R. D. James & D. Kinderlehrer, Frustration in ferromagnetic materials, Cont. Mech. Thermodyn. 2 (1990), 215-239. · doi:10.1007/BF01129598
[31] R. D. James & D. Kinderlehrer, Theory of magnetostriction with applications to Tb x Dy1?x Fe2, Phil. Mag. B 68 (1993), 237-274.
[32] F. John, On quasi-isometric mappings I, Comm. Pure Appl. Math. 21 (1968), 77-110. · Zbl 0157.45803 · doi:10.1002/cpa.3160210107
[33] F. John, On quasi-isometric mappings II, Comm. Pure Appl. Math. 22 (1969), 265-278. · Zbl 0174.17402 · doi:10.1002/cpa.3160220209
[34] A. Khachaturyan, Some questions concerning the theory of phase transformations in solids, Soviet Physics-Solid State 8 (1967), 2163-2168.
[35] A. Khachaturyan, Theory of structural transformations in solids, Wiley, 1983.
[36] A. Khachaturyan & G. Shatalov, Theory of macroscopic periodicity for a phase transition in the solid state, Soviet Physics JETP 29 (1969), 557-561.
[37] R. V. Kohn, The relationship between linear and nonlinear variational models of coherent phase transitions, in: Trans. 7th Army Conf. on Applied Mathematics and Computing (ed. F. Dressel). · Zbl 0692.73016
[38] R. V. Kohn & S. Müller, Branching of twins near a austenite/twinned-martensite interface, Phil. Mag. A 66 (1992), 697-715.
[39] R. V. Kohn & S. Müller, Surface energy and microstructure in coherent phase transitions, to appear in Comm. Pure Appl. Math. · Zbl 0803.49007
[40] R. V. Kohn & P. Sternberg, Local minimizers and singular perturbations, Proc. Roy. Soc. Edinburgh A 111 (1989), 69-84. · Zbl 0676.49011
[41] N. H. Kuiper, On C 1 isometric embeddings, I. Proc. Konikl. Nederl. Ak. Wet. A 58 (1995), 545-556. · Zbl 0067.39601
[42] E. Lifshitz, On the magnetic structure of iron, J. Phys 8 (1944), 337-346. · Zbl 0063.03557
[43] O. Martio, S. Rickman & J. Väisälä Topological and metric properties of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 488 (1971), 1-31. · Zbl 0223.30018
[44] O. Martio & J. Väisälä, Elliptic equations and maps of bounded length distorsion, Math. Ann. 282 (1988), 423-443. · Zbl 0632.35021 · doi:10.1007/BF01460043
[45] L. Modica, Gradient theory of phase transitions and minimal interface criteria, Arch. Rational Mech. Anal. 98 (1987), 357-383. · Zbl 0616.76004 · doi:10.1007/BF00251230
[46] S. Müller, Singular perturbations as a selection criterion for periodic minimizing sequences, Calc. Var. 1 (1993), 169-204. · Zbl 0821.49015 · doi:10.1007/BF01191616
[47] S. Müller & V. ?verák, Surprising attainment results for the two-well problem, preprint SFB256, Bonn University.
[48] J. Nash, C 1 isometric embeddings, Ann. Math. 60 (1954), 383-396. · Zbl 0058.37703 · doi:10.2307/1969840
[49] I. Privorotskii, Thermodynamic theory of domain structures, Wiley, 1976.
[50] Yu. G. Reshetnyak, On the stability of conformal maps in multidimensional spaces, Sib. Math. J. 8 (1967), 69-85. · Zbl 0172.37801 · doi:10.1007/BF01040573
[51] Yu. G. Reshetnyak, Liouville’s theorem under minimal regularity assumptions, Sib. Math. J. 8 (1967), 631-634. · Zbl 0167.36102
[52] Yu. G. Reshetnyak, Space mappings with bounded distorsions, Transl. of Math. Monographs 73, Amer. Math. Soc., 1989. · Zbl 0667.30018
[53] S. Rickman, Quasiregular mappings, Springer, 1993.
[54] A. Roitburd, The domain structure of crystals formed in the solid phase, Soviet Physics-Solid State 10 (1969), 2870-2876.
[55] A. Roitburd, Martensitic transformation as a typical phase transformation in solids, Solid State Physics 33, Academic Press, New York, 1978, 317-390.
[56] L. Simon, Geometric measure theory, Proc. Centre for Math. Analysis 3, Australian Nat. Univ., Canberra, 1984.
[57] V. ?verák, On the problem of two wells, in: Microstructure and phase transitions, IMA Vols. Appl. Math. 54 (eds. J. Erickcsen, R. D. James, D. Kinderlehrer, & M. Luskin), Springer, 1993, pp. 183-189.
[58] V. ?verák, Quasiconvex functions with subquadratic growth, Proc. R. Soc. Lond. 433 (1991), 723-725. · Zbl 0741.49016 · doi:10.1098/rspa.1991.0073
[59] A. I. Volp’ert, The spaces BV and quasilinear equations, Mat. Sb. 73 (1967), 225-267. · Zbl 0168.07402 · doi:10.1070/SM1967v002n02ABEH002340
[60] A. I. Vol’pert & S. I. Hudjaev, Analysis in classes of discontinuous functions and equations of mathematical physics, M. Nijhoff, 1985.
[61] K. Zhang, Remarks on the two well problem with rotations, Proc. Amer. Math. Soc. 117 (1993), 687-688. · Zbl 0769.73015 · doi:10.1090/S0002-9939-1993-1116277-X
[62] W. Ziemer, Weakly differentiable functions, Springer, 1989. · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.