×

Asymptotic boundary estimates for solutions to the \(p\)-Laplacian with infinite boundary values. (English) Zbl 1524.35268

Summary: In this paper, by using Karamata regular variation theory and the method of upper and lower solutions, we mainly study the second order expansion of solutions to the following \(p\)-Laplacian problems: \(\Delta_p u=b(x)f(u), u>0, x\in \Omega, u|_{\partial \Omega}=\infty\), where \(\Omega\) is a bounded domain with smooth boundary in \(\mathbb{R}^N\) \((N\geq 2), p>1, b \in C^{\alpha}(\bar{\Omega})\) which is positive in \(\Omega\) and may be vanishing on the boundary. The absorption term \(f\) is normalized regularly varying at infinity with index \(\sigma >p-1\). The results extend some previous findings of D. Repovš [J. Math. Anal. Appl. 395, No. 1, 78–85 (2012; Zbl 1250.35109)] in a certain sense.

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J20 Variational methods for second-order elliptic equations
35J25 Boundary value problems for second-order elliptic equations
35B40 Asymptotic behavior of solutions to PDEs

Citations:

Zbl 1250.35109

References:

[1] Repovš, D.: Asymptotics for singular solutions of quasilinear elliptic equations with an absorption term. J. Math. Anal. Appl. 395, 78-85 (2012) · Zbl 1250.35109 · doi:10.1016/j.jmaa.2012.05.017
[2] Bieberbach, L.: Δu=eu \(\Delta u=e^u\) und die automorphen Funktionen. Math. Ann. 77, 173-212 (1916) · doi:10.1007/BF01456901
[3] Keller, J.B.: On solutions of Δu=f(u)\( \Delta u=f(u)\). Commun. Pure Appl. Math. 10, 503-510 (1957) · Zbl 0090.31801 · doi:10.1002/cpa.3160100402
[4] Osserman, R.: On the inequality Δu≥f(u)\( \Delta u\geq f(u)\). Pac. J. Math. 7, 1641-1647 (1957) · Zbl 0083.09402 · doi:10.2140/pjm.1957.7.1641
[5] Loewner, C.; Nirenberg, L., Partial differential equations invariant under conformal or projective transformations, 245-272 (1974), New York · Zbl 0298.35018
[6] Bandle, C., Marcus, M.: Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior. J. Anal. Math. 58, 9-24 (1992) · Zbl 0802.35038 · doi:10.1007/BF02790355
[7] Cîrstea, F., Rǎdulescu, V.: Uniqueness of the blow-up boundary solution of logistic equations with absorbtion. C. R. Acad. Sci. Paris, Ser. I 335, 447-452 (2002) · Zbl 1183.35124 · doi:10.1016/S1631-073X(02)02503-7
[8] Cîrstea, F., Rǎdulescu, V.: Nonlinear problems with boundary blow-up: a Karamata regular variation theory approach. Asymptot. Anal. 46, 275-298 (2006) · Zbl 1245.35037
[9] Cîrstea, F., Rǎdulescu, V.: Blow-up solutions for semilinear elliptic problems. Nonlinear Anal. 48, 541-554 (2002) · Zbl 1008.35016 · doi:10.1016/S0362-546X(00)00202-9
[10] Cîrstea, F., Du, Y.: General uniqueness results and variation speed for blow-up solutions of elliptic equations. Proc. Lond. Math. Soc. 91, 459-482 (2005) · Zbl 1108.35068 · doi:10.1112/S0024611505015273
[11] Zhang, Z., Ma, Y., Mi, L., Li, X.: Blow-up rates of large solutions for elliptic equations. J. Differ. Equ. 249, 180-199 (2010) · Zbl 1191.35137 · doi:10.1016/j.jde.2010.02.019
[12] Zhang, Z.: The second expansion of large solutions for semilinear elliptic equations. Nonlinear Anal. 74, 3445-3457 (2011) · Zbl 1217.35074 · doi:10.1016/j.na.2011.02.031
[13] Huang, S., Tian, Q.: Second-order estimate for blow-up solutions of elliptic equations. Nonlinear Anal. 74, 2031-2044 (2011) · Zbl 1210.35107 · doi:10.1016/j.na.2010.11.012
[14] Huang, S., Tian, Q., Zhang, S., Xi, J.: A second order estimate for blow-up solutions of elliptic equations. Nonlinear Anal. 74, 2342-2350 (2011) · Zbl 1210.35108 · doi:10.1016/j.na.2010.11.037
[15] Mi, L., Liu, B.: Second order expansion for blowup solutions of semilinear elliptic problems. Nonlinear Anal. 75, 2591-2613 (2012) · Zbl 1253.35057 · doi:10.1016/j.na.2011.11.002
[16] Gladiali, F., Porru, G.: Estimates for explosive solutions to p-Laplace equations. In: Progress in Partial Differential Equations, Pont-á-Mousson, 1997, vol. 1; in: Pitman Res. Notes Math. Ser., vol. 383, Longman, Harlow, 1998, pp. 117-127 · Zbl 0916.35041
[17] Mohammed, A.: Existence and asymptotic behavior of blow-up solutions to weighted quasilinear equations. J. Math. Anal. Appl. 298, 621-637 (2004) · Zbl 1126.35029 · doi:10.1016/j.jmaa.2004.05.030
[18] Mohammed, A.: Boundary asymptotic and uniqueness of solutions to the p-Laplacian with infinite boundary values. J. Math. Anal. Appl. 325, 480-489 (2007) · Zbl 1142.35412 · doi:10.1016/j.jmaa.2006.02.008
[19] Covei, D.: Large and entire large solution for a quasilinear problem. Nonlinear Anal. 70, 1738-1745 (2009) · Zbl 1168.35355 · doi:10.1016/j.na.2008.02.057
[20] García-Melián, J., Rossi, J.D., Sabina, J.: Large solutions to the p-Laplacian for large p. Calc. Var. Partial Differ. Equ. 31, 187-204 (2008) · Zbl 1187.35072 · doi:10.1007/s00526-007-0109-6
[21] García-Melián, J.: Large solutions for equations involving the p-Laplacian and singular weights. Z. Angew. Math. Phys. 129, 1-4 (2008)
[22] Huang, P., Shieh, M., Wang, S.: Explicit necessary and sufficient conditions for the existence of nonnegative solutions of a p-Laplacian blow-up problem. Taiwan. J. Math. 13, 1077-1093 (2009) · Zbl 1194.34027 · doi:10.11650/twjm/1500405461
[23] Wei, L., Zhu, J.: The existence and blow-up rate of large solutions of one-dimensional p-Laplacian equations. Nonlinear Anal., Real World Appl. 13, 665-676 (2012) · Zbl 1253.34035 · doi:10.1016/j.nonrwa.2011.08.007
[24] Zhang, Z.: Large solutions to the Monge-Ampère equations with nonlinear gradient terms: existence and boundary behavior. J. Differ. Equ. 264, 263-296 (2018) · Zbl 1379.35157 · doi:10.1016/j.jde.2017.09.010
[25] Zhang, Z.: Boundary behavior of large solutions to p-Laplacian elliptic equations. Nonlinear Anal., Real World Appl. 33, 40-57 (2017) · Zbl 1352.35064 · doi:10.1016/j.nonrwa.2016.05.008
[26] Zhang, X., Du, Y.: Sharp conditions for the existence of boundary blow-up solutions to the Monge-Ampère equation. Calc. Var. Partial Differ. Equ. 57(2), 30 (2018) · Zbl 1410.35051 · doi:10.1007/s00526-018-1312-3
[27] Zhang, X., Feng, M.: Boundary blow-up solutions to the k-Hessian equation with a weakly superlinear nonlinearity. J. Math. Anal. Appl. 464, 456-472 (2018) · Zbl 1394.35058 · doi:10.1016/j.jmaa.2018.04.014
[28] Zhang, X., Feng, M.: Boundary blow-up solutions to the k-Hessian equation with singular weights. Nonlinear Anal. 167, 51-66 (2018) · Zbl 1379.35130 · doi:10.1016/j.na.2017.11.001
[29] Mi, L., Qi, Y., Liu, B.: Blow-up rate of the unique solution for a class of one-dimensional p-Laplacian equations. Nonlinear Anal., Real World Appl. 13, 2734-2746 (2012) · Zbl 1266.34053 · doi:10.1016/j.nonrwa.2012.03.015
[30] Seneta, R.: Regular Varying Functions. Lecture Notes in Math., vol. 508. Springer, Berlin (1976) · Zbl 0324.26002 · doi:10.1007/BFb0079658
[31] Resnick, S.I.: Extreme Values, Regular Variation, and Point Processes. Springer, New York (1987) · Zbl 0633.60001 · doi:10.1007/978-0-387-75953-1
[32] Maric, V.: Regular Variation and Differential Equations. Lecture Notes in Math., vol. 1726. Springer, Berlin (2000) · Zbl 0946.34001
[33] Tolksdorf, P.: On the Dirichlet problem for quasilinear equations in domains with conical boundary points. Commun. Partial Differ. Equ. 8, 773-817 (1983) · Zbl 0515.35024 · doi:10.1080/03605308308820285
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.