×

Risk measures and multivariate extensions of Breiman’s theorem. (English) Zbl 1246.91060

The authors consider discrete-time insurance risk models with finite time horizon and obtain asymptotics of the ruin probability by means of sum of the tail probabilities of individual claim amounts under different dependence settings for the claim amounts and discount factors. More precisely, they investigate asymptotics of ruin probability under multivariate regular variation and derive them from extensions of Breiman’s theorem. They thus present new situations where the ruin probability admits computable equivalents. Similar asymptotics are also derived for the value at risk.

MSC:

91B30 Risk theory, insurance (MSC2010)
62P05 Applications of statistics to actuarial sciences and financial mathematics

References:

[1] Alink, S., Löwe, M. and Wüthrich, M. V. (2004). Diversification of aggregate dependent risks. Insurance Math. Econom. 35, 77-95. · Zbl 1052.62105 · doi:10.1016/j.insmatheco.2004.05.001
[2] Alink, S., Löwe, M. and Wüthrich, M. V. (2005). Analysis of the expected shortfall of aggregate dependent risks. ASTIN Bull. 35, 25-43. · Zbl 1101.62092 · doi:10.2143/AST.35.1.583164
[3] Arbenz, P., Embrechts, P. and Puccetti, G. (2011). The AEP algorithm for the fast computation of the distribution of the sum of dependent random variables. Bernoulli 17, 562-591. · Zbl 1248.60018 · doi:10.3150/10-BEJ284
[4] Barbe, P., Fougères, A.-L. and Genest, C. (2006). On the tail behaviour of sums of dependent risks. ASTIN Bull. 36, 361-373. · Zbl 1162.91395 · doi:10.2143/AST.36.2.2017926
[5] Basrak, B., Davis, R. A. and Mikosch, T. (2002). Regular variation of GARCH processes. Stoch. Process. Appl. 99, 95-115. · Zbl 1060.60033 · doi:10.1016/S0304-4149(01)00156-9
[6] Beirlant, J., Goegebeur, Y., Teugels, J. and Segers, J. (2004). Statistics of Extremes . John Wiley, Chichester. · Zbl 1070.62036 · doi:10.1002/0470012382
[7] Cai, J. (2002). Ruin probabilities with dependent rates of interest. J. Appl. Prob. 39, 312-323. · Zbl 1007.60096 · doi:10.1239/jap/1025131428
[8] Chen, Y. and Su, C. (2006). Finite time ruin probability with heavy-tailed insurance and financial risks. Statist. Prob. Lett. 76, 1812-1820. · Zbl 1171.91348 · doi:10.1016/j.spl.2006.04.029
[9] Cossette, H. and Marceau, E. (2000). The discrete-time risk model with correlated classes of business. Insurance Math. Econom. 26, 133-149. · Zbl 1103.91358 · doi:10.1016/S0167-6687(99)00057-8
[10] Davis, R. A. and Mikosch, T. (2001). Point process convergence of stochastic volatility processes with application to sample autocorrelation. In Probability, Statistics and Seismology (J. Appl. Prob. Spec. Vol. 38A ), ed. D. J. Daley, Applied Probability Trust, Sheffield, pp. 93-104. · Zbl 1021.60038 · doi:10.1239/jap/1085496594
[11] De Haan, L. and Resnick, S. I. (1977). Limit theory for multivariate sample extremes. Z. Wahrscheinlichkeitsth. 40, 317-337. · Zbl 0375.60031 · doi:10.1007/BF00533086
[12] Degen, M., Lambrigger, D. and Segers, J. (2010). Risk concentration and diversification: second-order properties. Insurance Math. Econom. 46, 541-546. · Zbl 1231.91174 · doi:10.1016/j.insmatheco.2010.01.011
[13] Embrechts, P. and Veraverbeke, N. (1982). Estimates for the probability of ruin with special emphasis on the possibility of large claims. Insurance Math. Econom. 1, 55-72. · Zbl 0518.62083 · doi:10.1016/0167-6687(82)90021-X
[14] Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events (Appl. Math. 33 ). Springer, Berlin. · Zbl 0873.62116
[15] Embrechts, P., Lambrigger, D. D. and Wüthrich, M. V. (2009a). Multivariate extremes and the aggregation of dependent risks: examples and counter-examples. Extremes 12, 107-127. · Zbl 1224.91057 · doi:10.1007/s10687-008-0071-5
[16] Embrechts, P., Nešlehová, J. and Wüthrich, M. V. (2009b). Additivity properties for value-at-risk under Archimedean dependence and heavy-tailedness. Insurance Math. Econom. 44, 164-169. · Zbl 1163.91431 · doi:10.1016/j.insmatheco.2008.08.001
[17] Foss, S. and Richards, A. (2010). On sums of conditionally independent subexponential random variables. Math. Operat. Res. 35, 102-119. · Zbl 1226.60066 · doi:10.1287/moor.1090.0430
[18] Goovaerts, M. J. \et (2005). The tail probability of discounted sums of Pareto-like losses in insurance. Scand. Actuarial J. 2005, 446-461. · Zbl 1144.91026 · doi:10.1080/03461230500361943
[19] Hult, H. and Samorodnitsky, G. (2008). Tail probabilities for infinite series of regularly varying random vectors. Bernoulli 14, 838-864. · Zbl 1158.60325 · doi:10.3150/08-BEJ125
[20] Kortschak, D. and Albrecher, H. (2009). Asymptotic results for the sum of dependent non-identically distributed random variables. Methodology Comput. Appl. Prob. 11, 279-306. · Zbl 1171.60348 · doi:10.1007/s11009-007-9053-3
[21] Mainik, G. and Rüschendorf, L. (2009). On optimal portfolio diversification with respect to extreme risks. · Zbl 1226.91069 · doi:10.1007/s00780-010-0122-z
[22] Maulik, K., Resnick, S. and Rootzén, H. (2002). Asymptotic independence and a network traffic model. J. Appl. Prob. 39, 671-699. · Zbl 1090.90017 · doi:10.1239/jap/1037816012
[23] Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59, 347-370. · Zbl 0722.62069 · doi:10.2307/2938260
[24] Ng, K. W., Tang, Q. H. and Yang, H. (2002). Maxima of sums of heavy-tailed random variables. ASTIN Bull. 32, 43-55. · Zbl 1098.60505 · doi:10.2143/AST.32.1.1013
[25] Nyrhinen, H. (1999). On the ruin probabilities in a general economic environment. Stoch. Process. Appl. 83, 319-330. · Zbl 0997.60041 · doi:10.1016/S0304-4149(99)00030-7
[26] Resnick, S. I. (1987). Extreme Values, Regular Variation, and Point Processes . Springer, New York. · Zbl 0633.60001
[27] Resnick, S. I. (2007). Heavy-Tail Phenomena. Springer, New York. · Zbl 1152.62029 · doi:10.1007/978-0-387-45024-7
[28] Sgibnev, M. S. (1996). On the distribution of the maxima of partial sums. Statist. Prob. Lett. 28, 235-238. · Zbl 0862.60040 · doi:10.1016/0167-7152(95)00129-8
[29] Tang, Q. and Tsitsiashvili, G. (2003a). Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks. Stoch. Process. Appl. 108, 299-325. · Zbl 1075.91563 · doi:10.1016/j.spa.2003.07.001
[30] Tang, Q. and Tsitsiashvili, G. (2003b). Randomly weighted sums of subexponential random variables with application to ruin theory. Extremes 6, 171-188. · Zbl 1049.62017 · doi:10.1023/B:EXTR.0000031178.19509.57
[31] Wang, D. and Tang, Q. (2006). Tail probabilities of randomly weighted sums of random variables with dominated variation. Stoch. Models 22, 253-272. · Zbl 1095.60008 · doi:10.1080/15326340600649029
[32] Wang, D., Su, C. and Zeng, Y. (2005). Uniform estimate for maximum of randomly weighted sums with applications to insurance risk theory. Sci. China Ser. A , 48, 1379-1394. · Zbl 1112.62123 · doi:10.1360/022004-016
[33] Wüthrich, M. V. (2003). Asymptotic value-at-risk estimates for sums of dependent random variables. ASTIN Bull. 33, 75-92. · Zbl 1098.62570 · doi:10.2143/AST.33.1.1040
[34] Zhang, Y., Shen, X. and Weng, C. (2009). Approximation of the tail probability of randomly weighted sums and applications. Stoch. Processes Appl. 119, 655-675. · Zbl 1271.62030 · doi:10.1016/j.spa.2008.03.004
[35] Zhu, C.-H. and Gao, Q.-B. (2008). The uniform approximation of the tail probability of the randomly weighted sums of subexponential random variables. Statist. Prob. Lett. 78, 2552-2558. \endharvbibliography · Zbl 1171.62011 · doi:10.1016/j.spl.2008.02.036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.