×

Asymptotic results for the sum of dependent non-identically distributed random variables. (English) Zbl 1171.60348

Summary: We extend some results about the probability that the sum of \(n\) dependent subexponential random variables exceeds a given threshold \(u\). In particular, the case of non-identically distributed and not necessarily positive random variables is investigated. Furthermore we establish criteria how far the tail of the marginal distribution of an individual summand may deviate from the others so that it still influences the asymptotic behavior of the sum. Finally we explicitly construct a dependence structure for which, even for regularly varying marginal distributions, no asymptotic limit of the tail of the sum exists. Some explicit calculations for diagonal copulas and \(t\)-copulas are given.

MSC:

60G70 Extreme value theory; extremal stochastic processes
60E05 Probability distributions: general theory
91B30 Risk theory, insurance (MSC2010)

References:

[1] H. Albrecher, S. Asmussen, and D. Kortschak, ”Tail asymptotics for the sum of two heavy-tailed dependent risks,” Extremes vol. 9(2) pp. 107–130, 2006. · Zbl 1142.60009 · doi:10.1007/s10687-006-0011-1
[2] S. Alink, M. Löwe, and M. V. Wüthrich, ”Diversification of aggregate dependent risks,” Insurance. Mathematics & Economics vol. 35(1) pp. 77–95, 2004. · Zbl 1052.62105 · doi:10.1016/j.insmatheco.2004.05.001
[3] S. Alink, M. Löwe, and M. V. Wüthrich, ”Analysis of the expected shortfall of aggregate dependent risks,” Astin Bulletin vol. 35(1) pp. 25–43, 2005a · Zbl 1101.62092 · doi:10.2143/AST.35.1.583164
[4] S. Alink, M. Löwe, and M. V. Wüthrich, ”Analysis of the diversification effect of aggregate dependent risks,” Statistica Neerlandica, 2005b (preprint). · Zbl 1101.62092
[5] S. Asmussen, and L. Rojas-Nandayapa, Sums of Dependent Lognormal Random Variables: Asymptotics and Simulation, Technical report. Thiele Center, 2006. · Zbl 1151.60009
[6] P. Barbe, A.-L. Fougéres, and C. Genest, ”On the tail behavior of sums of dependent risks,” Astin Bulletin vol. 36(2) pp. 361–373, 2006. · Zbl 1162.91395 · doi:10.2143/AST.36.2.2017926
[7] B. Basrak, The Sample Autocorrelation Function of Non-linear Time Series, Dissertation. University of Groningen, 2000.
[8] B. Basrak, R. A. Davis, and T. Mikosch, ”A characterization of multivariate regular variation,” Annals of Applied Probabability vol. 12(3) pp. 908–920, 2002. · Zbl 1070.60011 · doi:10.1214/aoap/1031863174
[9] N. Bäuerle, and A. Müller, ”Modeling and comparing dependencies in multivariate risk portfolios,” ASTIN Bulletin vol. 28(1) pp. 59–76, 1998. · Zbl 1137.91484 · doi:10.2143/AST.28.1.519079
[10] J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels, Statistics of Extremes. Wiley: Chichester, 2004. · Zbl 1070.62036
[11] S. Demarta, and A. J. McNeil, ”The t copula and related copulas,” Internatational Statististical Review vol. 73(1) pp. 111–129, 2005. · Zbl 1104.62060 · doi:10.1111/j.1751-5823.2005.tb00254.x
[12] P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling Extremal Events, Springer: Berlin, 1997.
[13] E. W. Frees, and E. A. Valdez, ”Understanding relationships using copulas,” North American Actuarial Journal vol. 2(1) pp. 1–25, 1998. · Zbl 1081.62564
[14] J. Galambos, The Asymptotic Theory of Extreme Order Statistics, Robert E. Krieger Publishing Co. Inc.: Melbourne, FL, 1987. · Zbl 0634.62044
[15] J. L. Geluk, and L. de Haan, Regular Variation, Extensions and Tauberian Theorems, vol. 40 of CWI Tract. Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1987. · Zbl 0624.26003
[16] H. Hult, and F. Lindskog, ”Multivariate extremes, aggregation and dependence in elliptical distributions,” Advances in Applied Probability vol. 34(3) pp. 587–608, 2002. · Zbl 1023.60021 · doi:10.1239/aap/1033662167
[17] H. Hult, and F. Lindskog, ”On Kesten’s counterexample to the Cramér–Wold device for regular variation,” Bernoulli vol. 12(1) pp. 133–142, 2006. · Zbl 1108.60015
[18] H. Joe, Multivariate Models and Dependence Concepts, Chapman & Hall: London, 1997. · Zbl 0990.62517
[19] O. Kallenberg, Random Measures. Akademie-Verlag: Berlin, 1983.
[20] S. A. Klugman, and R. Parsa, ”Fitting bivariate loss distributions with copulas,” Insurance. Mathematics Economics vol. 24(1–2) pp. 139–148, 1999. · Zbl 0931.62044 · doi:10.1016/S0167-6687(98)00039-0
[21] C. Klüppelberg, and T. Mikosch, ”Large deviations of heavy-tailed random sums with applications in insurance and finance,” J. Appl. Probab. vol. 34(2) pp. 293–308, 1997. · Zbl 0903.60021 · doi:10.2307/3215371
[22] Y. Malevergne, and D. Sornette, Extreme Financial Risks–from Dependence to Risk Management, Springer: Berlin, 2006. · Zbl 1093.62098
[23] A. W. Marshall, and I. Olkin, ”Domains of attraction of multivariate extreme value distributions,” Annals of Probability vol. 11(1) pp. 168–177, 1983. · Zbl 0508.60022 · doi:10.1214/aop/1176993666
[24] R. B. Nelsen, An Introduction to Copulas, Springer: New York, 1999. · Zbl 0909.62052
[25] S. I. Resnick, Extreme Values, egular Variation, and Point Processes, Springer: New York, 1987. · Zbl 0633.60001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.