×

Homology of formal deformations of proper étale Lie groupoids. (English) Zbl 1246.53120

Summary: The cyclic homology theory of formal deformation quantizations of the convolution algebra associated to a proper étale Lie groupoid is studied. We compute the Hochschild cohomology of the convolution algebra and express it in terms of alternating multi-vector fields on the associated inertia groupoid. We introduce a non-commutative Poisson homology whose computation enables us to determine the Hochschild homology of formal deformations of the convolution algebra. Then it is shown that the cyclic (co)homology of such formal deformations can be described by an appropriate sheaf cohomology theory. This enables us to determine the corresponding cyclic homology groups in terms of orbifold cohomology of the underlying orbifold. Using the thus obtained description of cyclic cohomology of the deformed convolution algebra, we give a complete classification of all traces on this formal deformation, and provide an explicit construction.

MSC:

53D55 Deformation quantization, star products
16E40 (Co)homology of rings and associative algebras (e.g., Hochschild, cyclic, dihedral, etc.)
58H05 Pseudogroups and differentiable groupoids
58H15 Deformations of general structures on manifolds

References:

[1] Adem A., Comm. Math. Phys. 237 pp 533– (2003)
[2] Baranovsky V., AG/0 pp 56– (2062)
[3] Bayen F., Ann. Phys. 110 pp 61– (1978) · Zbl 0377.53024 · doi:10.1016/0003-4916(78)90224-5
[4] Brylinski J. L., J. Di{\currency}. Geom. 28 (1) pp 93– (1988)
[5] DOI: 10.1007/BF00539624 · Zbl 0646.58026 · doi:10.1007/BF00539624
[6] DOI: 10.1007/BF00961407 · Zbl 0812.19003 · doi:10.1007/BF00961407
[7] DOI: 10.1016/j.jpaa.2003.10.004 · Zbl 1055.16010 · doi:10.1016/j.jpaa.2003.10.004
[8] Connes A., C.R.A.S. Paris pp 296– (1983)
[9] Connes A., Inst. Hautes E’t. Sci. Publ. Math. 62 pp 257– (1985)
[10] DOI: 10.1023/A:1007756702025 · Zbl 0937.19007 · doi:10.1023/A:1007756702025
[11] Crainic M., Math. 521 pp 25– (2000)
[12] DOI: 10.1006/aima.2000.1944 · Zbl 0989.22010 · doi:10.1006/aima.2000.1944
[13] Fedosov B., J. Di{\currency}. Geom. 40 pp 213– (1994)
[14] DOI: 10.1023/A:1007601802484 · Zbl 0998.53058 · doi:10.1023/A:1007601802484
[15] Fedosov B., IRMA Lect. Math. Theor. Phys. 1 pp 67– (2002)
[16] Fedosov B., Grenoble 54 (5) pp 1601– (2004) · Zbl 1071.53055 · doi:10.5802/aif.2061
[17] Feigin B. P., Springer Lect. Notes Math. 1289 pp 97– (1987)
[18] Getzler E., Israel Math. Conf. Proc. 7 pp 65– (1993)
[19] Grothendieck A., Mem. AMS pp 16– (1955)
[20] Kawasaki T., Nagoya Math. J. 84 pp 135– (1981) · Zbl 0437.58020 · doi:10.1017/S0027763000019589
[21] DOI: 10.1023/B:MATH.0000027508.00421.bf · Zbl 1058.53065 · doi:10.1023/B:MATH.0000027508.00421.bf
[22] DOI: 10.1023/A:1007767628271 · Zbl 0883.22005 · doi:10.1023/A:1007767628271
[23] DOI: 10.1023/A:1007773511327 · Zbl 0938.22002 · doi:10.1023/A:1007773511327
[24] DOI: 10.1007/BF02099427 · Zbl 0887.58050 · doi:10.1007/BF02099427
[25] Nest R., Progr. Math. 172 pp 337– (1999)
[26] Pflaum M. J., Springer Lect. Notes Math. pp 1768– (2001)
[27] DOI: 10.1016/S0926-2245(03)00050-0 · Zbl 1055.53069 · doi:10.1016/S0926-2245(03)00050-0
[28] DOI: 10.1073/pnas.42.6.359 · Zbl 0074.18103 · doi:10.1073/pnas.42.6.359
[29] DOI: 10.1016/S0001-8708(02)00023-3 · Zbl 1163.53350 · doi:10.1016/S0001-8708(02)00023-3
[30] Steer B., Contemp. Math. 239 pp 251– (1999) · doi:10.1090/conm/239/03607
[31] Teleman N., Paris Ser. I Math. 326 pp 1261– (1998)
[32] DOI: 10.2307/2374983 · Zbl 0797.58012 · doi:10.2307/2374983
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.