×

Algebraic deformations arising from orbifolds with discrete torsion. (English) Zbl 1055.16010

Let \(R\) be a commutative ring with the group of units \(R^\times\), let \(G\) be a finite group defining an action on \(R\), and \(\alpha\colon G\times G\to R^\times\) be a 2-cocycle. The authors describe the Hochschild cohomology \(HH^*\), deformations and the behavior of the center of the crossed product ring \(A=R\#_\alpha G\) under deformations when \(R=\mathbb{C}[x,y,z]\) and \(G\) is Abelian. In the particular case \(G=\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}\) they compute all nontrivial groups \(HH^i(A)\), \(i=0,\dots,3\), a universal deformation formula \(F\), which provides a formal deformation \(A_F\) of \(A\) in the sense of A. Giaquinto and J. J. Zhang [J. Pure Appl. Algebra 128, No. 2, 133-151 (1998; Zbl 0938.17015)], and the center of the algebra \(A_F\). The authors underline that their results are closely related with earlier calculations of chiral numbers for orbifolds with discrete torsion by C. Vafa and E. Witten [J. Geom. Phys. 15, No. 3, 189-214 (1995; Zbl 0816.53053)].

MSC:

16E40 (Co)homology of rings and associative algebras (e.g., Hochschild, cyclic, dihedral, etc.)
16S80 Deformations of associative rings
16S35 Twisted and skew group rings, crossed products
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory

References:

[1] Aspinwall, P.; Morrison, D.; Gross, M., Stable singularities in string theory, Comm. Math. Phys., 178, 135-146 (1996)
[2] Benson, D. J., Representations and Cohomology I: Basic Representation Theory of Finite Groups and Associative Algebras (1991), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0718.20001
[3] Benson, D. J., Representations and Cohomology II: Cohomology of Groups and Modules (1991), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0731.20001
[4] Boisen, P. R., The representation theory of fully group-graded algebras, J. Algebra, 151, 160-179 (1992) · Zbl 0768.16012
[6] Bridgeland, T.; King, A.; Reid, M., The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc., 14, 3, 535-554 (2001) · Zbl 0966.14028
[10] Connes, A., Noncommutative Geometry (1994), Academic Press: Academic Press New York · Zbl 1106.58004
[13] Giaquinto, A.; Zhang, J., Bialgebra actions, twists, and universal deformation formulas, J. Pure Appl. Algebra, 128, 133-151 (1998) · Zbl 0938.17015
[14] Halbout, G., Formule d’homotopie entre les complexes de Hochschild et de De Rham, Comput. Math., 126, 123-145 (2001) · Zbl 1007.16008
[15] Keller, B., On the cyclic homology of exact categories, J. Pure Appl. Algebra, 136, 1, 1-56 (1999) · Zbl 0923.19004
[20] McCarthy, R., The cyclic homology of an exact category, J. Pure Appl. Algebra, 93, 251-296 (1994) · Zbl 0807.19002
[21] Montgomery, S.; Schneider, H.-J., Skew derivations of finite-dimensional algebras and actions of the double of the Taft Hopf algebra, Tsukuba J. Math., 25, 337-358 (2001) · Zbl 1032.16031
[22] Passman, D. S., Infinite Crossed Products, Pure and Applied Mathematics, Vol. 135 (1989), Academic Press: Academic Press New York · Zbl 0519.16010
[23] Ştefan, D., Hochschild cohomology on Hopf Galois extensions, J. Pure Appl. Algebra, 103, 221-233 (1995) · Zbl 0838.16008
[24] Vafa, C.; Witten, E., On orbifolds with discrete torsion, J. Geom. Phys., 15, 189-214 (1995) · Zbl 0816.53053
[25] Weibel, C., An Introduction to Homological Algebra (1994), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0797.18001
[26] Weibel, C., Cyclic homology for schemes, Proc. Amer. Math. Soc., 124, 6, 1655-1662 (1996) · Zbl 0855.19002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.