×

Isogeometric contact analysis using mortar method. (English) Zbl 1242.74131

Summary: In the present work, an isogeometric contact analysis scheme using mortar method is proposed. Because the isogeometric analysis is employed for contact analysis, the geometric exactness of the contact region is maintained without any loss of geometric data because of geometry approximation. Thus, the proposed method can overcome underlying shortcomings that result from the geometric approximation of contact surfaces in the conventional finite element (FE)-based contact analysis. For an isogeometric contact analysis, the schemes for treating the contact conditions and detecting the real contact surfaces are essentially required. In the proposed method, the mortar method is adopted as a nonconforming contact treatment scheme because it is expected to be in good harmony with the useful characteristics of nonuniform rational B-spline A new matching algorithm is proposed to combine the mortar method with the isogeometric analysis to guarantee consistent contact surface information with the nonuniform rational B-spline curve. The present scheme is verified by patch test and the well-known problems which have theoretical solutions such as interference fit and the Hertzian contact problem. It is shown that the problems with curved contact surfaces which are difficult to treat by conventional approaches can be easily dealt with.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74M15 Contact in solid mechanics
65D17 Computer-aided design (modeling of curves and surfaces)

Software:

ISOGAT
Full Text: DOI

References:

[1] Hughes, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering 194 pp 4135– (2005) · Zbl 1151.74419 · doi:10.1016/j.cma.2004.10.008
[2] Uhm, A locally refinable T-spline finite element method for CAD/ CAE integration, Structural Engineering and Mechanics 30 pp 225– (2008) · doi:10.12989/sem.2008.30.2.225
[3] Dörfel, Adaptive isogeometric analysis by local h-refinement with T-splines, Computer Methods in Applied Mechanics and Engineering 199 pp 264– (2010) · Zbl 1227.74125 · doi:10.1016/j.cma.2008.07.012
[4] Bazilevs, Isogeometric analysis using T-splines, Computer Methods in Applied Mechanics and Engineering 199 pp 229– (2010) · Zbl 1227.74123 · doi:10.1016/j.cma.2009.02.036
[5] Kim, Isogeometric analysis for Trimmed CAD Surfaces, Computer Methods in Applied Mechanics and Engineering 198 pp 2982– (2009) · Zbl 1229.74131 · doi:10.1016/j.cma.2009.05.004
[6] Auricchio, A fully ”locking-free” isogeometric approach for plane linear elasticity problems: A stream function formulation, Computer Methods in Applied Mechanics and Engineering 197 pp 160– (2007) · Zbl 1169.74643 · doi:10.1016/j.cma.2007.07.005
[7] Reali, An isogeometric analysis approach for the study of structural vibrations, Journal of Earthquake Engineering 10 pp 1– (2006) · doi:10.1080/13632460609350626
[8] Cottrell, Isogeometric analysis of structural vibrations, Computer Methods in Applied Mechanics and Engineering 195 pp 5257– (2006) · Zbl 1119.74024 · doi:10.1016/j.cma.2005.09.027
[9] Bazilevs, Isogeometric fluid-structure interaction: Theory, algorithms and computations, Computational Mechanics 43 pp 3– (2008) · Zbl 1169.74015 · doi:10.1007/s00466-008-0315-x
[10] Bazilevs, Isogeometric fluid-structure interaction analysis with applications to arterial blood flow, Computational Mechanics 38 pp 310– (2006) · Zbl 1161.74020 · doi:10.1007/s00466-006-0084-3
[11] Auricchio, A fully ”locking-free” isogeometric approach for plane linear elasticity problems: a stream function formulation, Computer Methods in Applied Mechanics and Engineering 197 pp 160– (2007) · Zbl 1169.74643
[12] Lipton, Robustness of isogeometric structural discretizations under severe mesh distortion, Computer Methods in Applied Mechanics and Engineering 199 pp 357– (2010) · Zbl 1227.74112 · doi:10.1016/j.cma.2009.01.022
[13] Wall, Isogeometric structural shape optimization, Computer Methods in Applied Mechanics and Engineering 197 pp 2976– (2008) · Zbl 1194.74263 · doi:10.1016/j.cma.2008.01.025
[14] Seo, Isogeometric topology optimization using trimmed spline surfaces, Computer Methods in Applied Mechanics and Engineering 199 pp 3270– (2010) · Zbl 1225.74068 · doi:10.1016/j.cma.2010.06.033
[15] El-abbasi, On the modelling of smooth contact surfaces using cubic splines, International Journal for Numerical Methods in Engineering 50 pp 953– (2001) · Zbl 1082.74558 · doi:10.1002/1097-0207(20010210)50:4<953::AID-NME64>3.0.CO;2-P
[16] Heege, A frictional contact element for strongly curved contact problems, International Journal for Numerical Methods in Engineering 39 pp 165– (1996) · Zbl 0842.73066 · doi:10.1002/(SICI)1097-0207(19960115)39:1<165::AID-NME846>3.0.CO;2-Y
[17] Pietrzak, Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment, Computer Methods in Applied Mechanics and Engineering 177 pp 351– (1999) · Zbl 0991.74047 · doi:10.1016/S0045-7825(98)00388-0
[18] Simo, An augmented Lagrangian treatment of contact problems involving friction, Computers & Structures 1 pp 97– (1992) · Zbl 0755.73085 · doi:10.1016/0045-7949(92)90540-G
[19] Wriggers, A note on tangent stiffness for fully nonlinear contact problems, Communications in Applied Numerical Methods 1 pp 199– (1985) · Zbl 0582.73110 · doi:10.1002/cnm.1630010503
[20] Papadopoulos, A mixed formulation for the finite element solution of contact problems, Computer Methods in Applied Mechanics and Engineering 94 pp 373– (1992) · Zbl 0743.73029 · doi:10.1016/0045-7825(92)90061-N
[21] Simo, A perturbed Lagrangian formulation for the finite element solution of contact problems, Computer Methods in Applied Mechanics and Engineering 50 pp 163– (1985) · Zbl 0552.73097 · doi:10.1016/0045-7825(85)90088-X
[22] Zavarise, A segment-to-segment contact strategy, Mathematical and Computer Modelling 28 pp 497– (1998) · Zbl 1002.74564 · doi:10.1016/S0895-7177(98)00138-1
[23] El-Abbasi, Stability and patch test performance of contact discretizations and a new solution algorithm, Computers & Structures 79 pp 1473– (2001) · doi:10.1016/S0045-7949(01)00048-7
[24] Brezzi, Mixed and Hybrid Finite Element Methods (1991) · Zbl 0788.73002 · doi:10.1007/978-1-4612-3172-1
[25] Bernardi, Coupling finite elements and spectral methods: first results, Mathematics of Computation 54 pp 21– (1990) · doi:10.1090/S0025-5718-1990-0995205-7
[26] Belgacem, The mortar finite element method for contact problems, Mathematical and Computer Modelling 84 pp 173– (1998) · Zbl 1098.74682
[27] Wohlmuth, A mortar finite element method using dual spaces for the Lagrange Multiplier, SIAM Journal on Numerical Analysis 38 pp 989– (2001) · Zbl 0974.65105 · doi:10.1137/S0036142999350929
[28] McDevitt, A mortar-finite element formulation for frictional contact problems, International Journal for Numerical Methods in Engineering 48 pp 1525– (2000) · Zbl 0972.74067 · doi:10.1002/1097-0207(20000810)48:10<1525::AID-NME953>3.0.CO;2-Y
[29] Puso, A mortar segment-to-segment contact method for large deformation solid mechanics, Computer Methods in Applied Mechanics and Engineering 193 pp 601– (2004) · Zbl 1060.74636 · doi:10.1016/j.cma.2003.10.010
[30] Puso, A segment-to-segment mortar contact method for quadratic elements and large deformations, Computer Methods in Applied Mechanics and Engineering 197 pp 555– (2008) · Zbl 1169.74627 · doi:10.1016/j.cma.2007.08.009
[31] Fischer, Frictionless 2D Contact formulations for finite deformations based on the mortar method, Computational Mechanics 36 pp 226– (2005) · Zbl 1102.74033 · doi:10.1007/s00466-005-0660-y
[32] Puso, A 3D mortar method for solid mechanics, International Journal for Numerical Methods in Engineering 59 pp 315– (2004) · Zbl 1047.74065 · doi:10.1002/nme.865
[33] Padmanabhan, Surface smoothing procedure for large deformation contact analysis, Finite Elements in Analysis and Design 37 pp 173– (2001) · Zbl 0998.74053 · doi:10.1016/S0168-874X(00)00029-9
[34] Wriggers, Smooth C1-interpolations for two-dimensional frictional contact problems, International Journal for Numerical Methods in Engineering 51 pp 1469– (2001) · Zbl 1065.74621 · doi:10.1002/nme.227
[35] Pietrzak, Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment, Computer Methods in Applied Mechanics and Engineering 177 pp 351– (1999) · Zbl 0991.74047
[36] Muñoz, Modelling unilateral frictionless contact using the null-space method and cubic B-Spline interpolation, Computer Methods in Applied Mechanics and Engineering 197 pp 979– (2008) · Zbl 1169.74509 · doi:10.1016/j.cma.2007.09.022
[37] Puso, A 3D contact smoothing method using Gregory patches, International Journal for Numerical Methods in Engineering 54 pp 1161– (2002) · Zbl 1098.74711 · doi:10.1002/nme.466
[38] Stadler, Subdivision schemes for smooth contact surfaces of arbitrary mesh topology in 3D, International Journal for Numerical Methods in Engineering 60 pp 1161– (2004) · Zbl 1060.74641 · doi:10.1002/nme.1001
[39] Flemisch, A new dual mortar method for curved interfaces: 2D elasticity, International Journal for Numerical Methods in Engineering 63 pp 813– (2005) · Zbl 1084.74050 · doi:10.1002/nme.1300
[40] Flemisch, Mortar methods with curved interfaces, Applied Numerical Mathematics Archive 54 pp 339– (2005) · Zbl 1078.65119 · doi:10.1016/j.apnum.2004.09.007
[41] Piegl, The NURBS Book (1997) · doi:10.1007/978-3-642-59223-2
[42] Kim, High-performance Domain-wise Parallel Direct Solver for Large-scale Structural Analysis, AIAA Journal 43 pp 662– (2005) · doi:10.2514/1.11171
[43] Temizer, Contact treatment in isogeometric analysis with NURBS, Computer Methods in Applied Mechanics and Engineering 200 pp 1100– (2011) · Zbl 1225.74126 · doi:10.1016/j.cma.2010.11.020
[44] Lorenzis, A large deformation frictional contact formulation using NURBS-based isogeometric analysis, International Journal for Numerical Methods in Engineering 87 pp 1278– (2011) · Zbl 1242.74104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.