×

Enhanced group analysis and exact solutions of variable coefficient semilinear diffusion equations with a power source. (English) Zbl 1242.35023

Summary: A new approach to group classification problems and more general investigations on transformational properties of classes of differential equations is proposed. It is based on mappings between classes of differential equations, generated by families of point transformations. A class of variable coefficient \((1+1)\)-dimensional semilinear reaction-diffusion equations of the general form \(f(x)u_{t} = (g(x)u_{x})_{x} + h(x)u^{m}\) \((m\neq 0,1)\) is studied from the symmetry point of view in the framework of the approach proposed. The singular subclass of the equations with \(m=2\) is singled out. The group classifications of the entire class, the singular subclass and their images are performed with respect to both the corresponding (generalized extended) equivalence groups and all point transformations. The set of admissible transformations of the imaged class is exhaustively described in the general case \(m\neq 2\). The procedure of classification of nonclassical symmetries, which involves mappings between classes of differential equations, is discussed. Wide families of new exact solutions are also constructed for equations from the classes under consideration by the classical method of Lie reductions and by generation of new solutions from known ones for other equations with point transformations of different kinds (such as additional equivalence transformations and mappings between classes of equations).

MSC:

35B06 Symmetries, invariants, etc. in context of PDEs
35K58 Semilinear parabolic equations
35K57 Reaction-diffusion equations
35C05 Solutions to PDEs in closed form
35A22 Transform methods (e.g., integral transforms) applied to PDEs

Software:

MACSYMA; MAGDA

References:

[1] Ablowitz, M.J., Zeppetella, A.: Explicit solutions of Fisher’s equation for a special wave speed. Bull. Math. Biol. 41, 835–840 (1979) · Zbl 0423.35079
[2] Abramenko, A.A., Lagno, V.I., Samoilenko, A.M.: Group classification of nonlinear evolution equations. II. Invariance under solvable local transformation groups. Differ. Equ. 38, 502–509 (2002) · Zbl 1029.35078 · doi:10.1023/A:1016307615221
[3] Akhatov, I.Sh., Gazizov, R.K., Ibragimov, N.Kh.: Nonlocal symmetries. A heuristic approach. J. Sov. Math. 55, 1401–1450 (1991) · Zbl 0760.35002 · doi:10.1007/BF01097533
[4] Arrigo, D.J., Hill, J.M.: Nonclassical symmetries for nonlinear diffusion and absorption. Stud. Appl. Math. 94, 21–39 (1995) · Zbl 0822.35064
[5] Arrigo, D.J., Hill, J.M., Broadbridge, P.: Nonclassical symmetry reductions of the linear diffusion equation with a nonlinear source. IMA J. Appl. Math. 52, 1–24 (1994) · Zbl 0791.35060 · doi:10.1093/imamat/52.1.1
[6] Basarab-Horwath, P., Lahno, V., Zhdanov, R.: The structure of Lie algebras and the classification problem for partial differential equations. Acta Appl. Math. 69, 43–94 (2001). arXiv:math-ph/0005013 · Zbl 1054.35002 · doi:10.1023/A:1012667617936
[7] Bluman, G.W., Cole, J.D.: The general similarity solution of the heat equation. J. Math. Mech. 18, 1025–1042 (1969) · Zbl 0187.03502
[8] Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, New York (1989) · Zbl 0698.35001
[9] Cariello, F., Tabor, M.: Painleve expansions for nonintegrable evolution equations. Physica D 39, 77–94 (1989) · Zbl 0687.35093 · doi:10.1016/0167-2789(89)90040-7
[10] Cherniha, R.: New Q-conditional symmetries and exact solutions of some reaction-diffusion-convection equations arising in mathematical biology. J. Math. Anal. Appl. 326, 783–799 (2007) · Zbl 1160.35031 · doi:10.1016/j.jmaa.2006.03.026
[11] Cherniha, R., Pliukhin, O.: New conditional symmetries and exact solutions of nonlinear reaction–diffusion–convection equations. J. Phys. A: Math. Theor. 40, 10049–10070 (2007). arXiv:math-ph/0612078 · Zbl 1128.35358 · doi:10.1088/1751-8113/40/33/009
[12] Clarkson, P.A., Mansfield, E.L.: Symmetry reductions and exact solutions of a class of nonlinear heat equations. Physica D 70, 250–288 (1994) · Zbl 0812.35017 · doi:10.1016/0167-2789(94)90017-5
[13] Crank, J.: The Mathematics of Diffusion, 2nd edn. Oxford University Press, London (1979) · Zbl 0427.35035
[14] Dorodnitsyn, V.A.: Group properties and invariant solutions of a nonlinear heat equation with a source or a sink. Preprint N 57, Moscow, Keldysh Institute of Applied Mathematics of Academy of Sciences USSR (1979). On invariant solutions of non-linear heat equation with a source. Zh. Vychisl. Mat. Mat. Fiz. 22, 1393–1400 (1982). (In Russian)
[15] Fushchich, W.I., Serov, N.I.: Conditional invariance and reduction of nonlinear heat equation. Dokl. Akad. Nauk Ukr. SSR Ser. A 7, 24–27 (1990). (In Russian) · Zbl 0727.35066
[16] Fushchych, W.I., Tsyfra, I.M.: On a reduction and solutions of the nonlinear wave equations with broken symmetry. J. Phys. A: Math. Gen. 20, L45–L48 (1987) · Zbl 0967.81033 · doi:10.1088/0305-4470/20/2/001
[17] Fushchych, W.I., Zhdanov, R.Z.: Conditional symmetry and reduction of partial differential equations. Ukr. Math. J. 44, 970–982 (1992)
[18] Fushchych, W.I., Shtelen, W.M., Serov, M.I., Popovych, R.O.: Q-conditional symmetry of the linear heat equation. Proc. Acad. Sci. Ukr. 12, 28–33 (1992)
[19] Gagnon, L., Winternitz, P.: Symmetry classes of variable coefficient nonlinear Schrödinger equations. J. Phys. A 26, 7061–7076 (1993) · Zbl 0821.35128 · doi:10.1088/0305-4470/26/23/043
[20] Gandarias, M.L.: New symmetries for a model of fast diffusion. Phys. Lett. A 286, 153–160 (2001) · Zbl 0969.35521 · doi:10.1016/S0375-9601(01)00405-4
[21] Hereman, W., Takaoka, M.: Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA. J. Phys. A 23, 4805–4822 (1990) · Zbl 0719.35085 · doi:10.1088/0305-4470/23/21/021
[22] Ibragimov, N.H. (ed.): Lie Group Analysis of Differential Equations–Symmetries, Exact Solutions and Conservation Laws, Vols. 1, 2. CRC Press, Boca Raton (1994) · Zbl 0864.35001
[23] Ivanova, N.M., Sophocleous, C.: On the group classification of variable coefficient nonlinear diffusion–convection equations. J. Comput. Appl. Math. 197, 322–344 (2006) · Zbl 1103.35007 · doi:10.1016/j.cam.2005.11.008
[24] Ivanova, N.M., Popovych, R.O., Sophocleous, C.: Group analysis of variable coefficient diffusion–convection equations. I. Enhanced group classification. arXiv:0710.2731 (2007) · Zbl 1257.35018
[25] Ivanova, N.M., Popovych, R.O., Sophocleous, C.: Group analysis of variable coefficient diffusion–convection equations. II. Contractions and exact solutions. arXiv:0710.3049 (2007)
[26] Kamin, S., Rosenau, P.: Nonlinear thermal evolution in an inhomogeneous medium. J. Math. Phys. 23, 1385–1390 (1982) · Zbl 0499.76111 · doi:10.1063/1.525506
[27] Kingston, J.G., Sophocleous, C.: On point transformations of a generalised Burgers equation. Phys. Lett. A 155, 15–19 (1991) · Zbl 0737.35109 · doi:10.1016/0375-9601(91)90500-8
[28] Kingston, J.G., Sophocleous, C.: On form-preserving point transformations of partial differential equations. J. Phys. A: Math. Gen. 31, 1597–1619 (1998) · Zbl 0905.35005 · doi:10.1088/0305-4470/31/6/010
[29] Kingston, J.G., Sophocleous, C.: Symmetries and form-preserving transformations of one-dimensional wave equations with dissipation. Int. J. Non-Linear Mech. 36, 987–997 (2001) · Zbl 1345.35063 · doi:10.1016/S0020-7462(00)00064-0
[30] Lahno, V., Zhdanov, R., Magda, O.: Group classification and exact solutions of nonlinear wave equations. Acta Appl. Math. 91, 253–313 (2006) · Zbl 1113.35132 · doi:10.1007/s10440-006-9039-0
[31] Lagno, V.I., Samoilenko, A.M.: Group classification of nonlinear evolution equations. I. Invariance under semisimple local transformation groups. Differ. Equ. 38, 384–391 (2002) · Zbl 1023.35042 · doi:10.1023/A:1016014026651
[32] Lahno, V.I., Spichak, S.V., Stognii, V.I.: Symmetry Analysis of Evolution Type Equations. Institute of Mathematics of NAS of Ukraine, Kyiv (2002)
[33] Lie, S.: Über die Integration durch bestimmte Integrale von einer Klasse linear partieller Differentialgleichung. Arch. Math. 6(3), 328–368 (1881) · JFM 13.0298.01
[34] Lie, S.: Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen. Teubner, Leipzig (1891) · JFM 23.0351.01
[35] Meleshko, S.V.: Group classification of equations of two-dimensional gas motions. Prikl. Mat. Meh. 58, 56–62 (1994). (In Russian). Translation in J. Appl. Math. Mech. 58, 629–635 (1994) · Zbl 0890.76071
[36] Murray, J.D.: Mathematical Biology I: An Introduction, 3rd edn. Springer, New York (2002) · Zbl 1006.92001
[37] Nikitin, A.G., Barannyk, T.A.: Solitary wave and other solutions for nonlinear heat equations. Cent. Eur. J. Math. 2, 840–858 (2004). arXiv:math-ph/0303004 · Zbl 1116.35035 · doi:10.2478/BF02475981
[38] Olver, P.: Applications of Lie Groups to Differential Equations. Springer, New York (1986) · Zbl 0588.22001
[39] Ovsiannikov, L.V.: Group properties of nonlinear heat equation. Dokl. Akad. Nauk SSSR 125, 492–495 (1959)
[40] Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982) · Zbl 0485.58002
[41] Patera, J., Winternitz, P.: Subalgebras of real three and four-dimensional Lie algebras. J. Math. Phys. 18, 1449–1455 (1977) · Zbl 0412.17007 · doi:10.1063/1.523441
[42] Peletier, L.A.: Applications of Nonlinear Analysis in the Physical Sciences. Pitman, London (1981) · Zbl 0474.35079
[43] Polyanin, A.D., Zaitsev, V.F.: Handbook of Nonlinear Partial Differential Equations. Chapman & Hall, Boca Raton (2004) · Zbl 1053.35001
[44] Popovych, R.O.: Classification of admissible transformations of differential equations. In: Collection of Works of Institute of Mathematics (Kyiv, Ukraine), vol. 3, no. 2, pp. 239–254 (2006) · Zbl 1150.35313
[45] Popovych, R.O., Ivanova, N.M.: New results on group classification of nonlinear diffusion–convection equations. J. Phys. A: Math. Gen. 37, 7547–7565 (2004). arXiv:math-ph/0306035 · Zbl 1067.35006 · doi:10.1088/0305-4470/37/30/011
[46] Popovych, R.O., Kunzinger, M., Eshraghi, H.: Admissible transformations and normalized classes of nonlinear Schrödinger equations. arXiv:math-ph/0611061 (2006) · Zbl 1216.35146
[47] Popovych, R.O., Vaneeva, O.O., Ivanova, N.M.: Potential nonclassical symmetries and solutions of fast diffusion equation. Phys. Lett. A 362, 166–173 (2007). arXiv:math-ph/0506067 · Zbl 1197.35145 · doi:10.1016/j.physleta.2006.10.015
[48] Prokhorova, M.: The structure of the category of parabolic equations. arXiv:math.AP/0512094 (2005)
[49] Serov, N.I.: Conditional invariance and exact solutions of a nonlinear heat equation. Ukr. Math. J. 42(10), 1216–1222 (1990) · Zbl 0731.35051 · doi:10.1007/BF01057392
[50] Touloukian, Y.S., Powell, P.W., Ho, C.Y., Klemens, P.G.: Thermophysical Properties of Matter, Vol. 1. Plenum, New York (1970)
[51] Vaneeva, O.O., Johnpillai, A.G., Popovych, R.O., Sophocleous, C.: Enhanced group analysis and conservation laws of variable coefficient reaction–diffusion equations with power nonlinearities. J. Math. Anal. Appl. 330, 1363–1386 (2007). arXiv:math-ph/0605081 · Zbl 1160.35365 · doi:10.1016/j.jmaa.2006.08.056
[52] Wang, X.Y.: Exact and explicit solitary wave solutions for the generalised Fisher equation. Phys. Lett. A 131, 277–279 (1988) · doi:10.1016/0375-9601(88)90027-8
[53] Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1996) · Zbl 0951.30002
[54] Zhdanov, R.Z., Lahno, V.I.: Conditional symmetry of a porous medium equation. Physica D 122, 178–186 (1998) · Zbl 0952.76087 · doi:10.1016/S0167-2789(98)00191-2
[55] Zhdanov, R.Z., Lahno, V.I.: Group classification of heat conductivity equations with a nonlinear source. J. Phys. A 32, 7405–7418 (1999) · Zbl 0990.35009 · doi:10.1088/0305-4470/32/42/312
[56] Zhdanov, R., Lahno, V.: Group classification of the general evolution equation: local and quasilocal symmetries, SIGMA 1 (2005), Paper 009, 7 pages. arXiv:nlin/0510003 · Zbl 1128.35010
[57] Zhdanov, R.Z., Lahno, V.I.: Group classification of the general second-order evolution equation: semi-simple invariance groups. J. Phys. A: Math. Theor. 40, 5083–5103 (2007) · Zbl 1133.35002 · doi:10.1088/1751-8113/40/19/010
[58] Zhdanov, R.Z., Tsyfra, I.M., Popovych, R.O.: A precise definition of reduction of partial differential equations. J. Math. Anal. Appl. 238, 101–123 (1999). arXiv:math-ph/0207023 · Zbl 0936.35012 · doi:10.1006/jmaa.1999.6511
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.