×

Computation of equilibrium measures. (English) Zbl 1241.31004

Summary: We present a new way of computing equilibrium measures numerically, based on the Riemann-Hilbert formulation. For equilibrium measures whose support is a single interval, the simple algorithm consists of a Newton-Raphson iteration where each step only involves fast cosine transforms. The approach is then generalized for multiple intervals.

MSC:

31A15 Potentials and capacity, harmonic measure, extremal length and related notions in two dimensions
65E05 General theory of numerical methods in complex analysis (potential theory, etc.)
30E25 Boundary value problems in the complex plane

Software:

DLMF; RHPackage
Full Text: DOI

References:

[1] Atkinson, K. E., The Numerical Solution of Integral Equations of the Second Kind (1997), Cambridge University Press · Zbl 0155.47404
[2] Deift, P., Orthogonal Polynomials and Random Matrices: a Riemann-Hilbert Approach (2000), American Mathematical Society · Zbl 0997.47033
[3] Deift, P.; Kriecherbauer, T.; McLaughlin, K. T.R., New results on the equilibrium measure for logarithmic potentials in the presence of an external field, J. Approx. Theory, 95, 388-475 (1998) · Zbl 0918.31001
[4] Good, I. J., The colleague matrix, a Chebyshev analogue of the companion matrix, Q. J. Math., 12, 61-68 (1961) · Zbl 0103.01003
[5] Górski, J., Méthode des points extrémaux de résolution du problème de Dirichlet dans l’espace, Ann. Polon. Math., 1, 418-429 (1955) · Zbl 0065.08901
[6] King, F. W., Hilbert Transforms: Volume 1 (2009), Cambridge University Press · Zbl 1188.44005
[7] Kuijlaars, A. B.J.; McLaughlin, K. T.R., Generic behavior of the density of states in random matrix theory and equilibrium problems in the presence of real analytic external fields, Comm. Pure Appl. Math., 53, 736-785 (2000) · Zbl 1022.31001
[8] Leja, F., Une méthode élémentaire de résolution du problème de Dirichlet dans le plan, Ann. Soc. Math. Polon., 23, 13-28 (1950) · Zbl 0039.32501
[9] Muskhelishvili, N. I., Singular Integral Equations (1953), Noordhoff: Noordhoff Groningen, based on the second Russian edition published in 1946 · Zbl 0051.33203
[10] S. Olver, A general framework for solving Riemann-Hilbert problems numerically, NA-10/05, Maths Institute, Oxford University, 2010.; S. Olver, A general framework for solving Riemann-Hilbert problems numerically, NA-10/05, Maths Institute, Oxford University, 2010. · Zbl 1257.65014
[11] Olver, S., Computing the Hilbert transform and its inverse, Math. Comp., 80, 1745-1767 (2011) · Zbl 1226.65103
[12] Olver, S., Numerical solution of Riemann-Hilbert problems: painlevé II, Found. Comput. Math., 11, 153-179 (2011) · Zbl 1214.30026
[13] S. Olver, RHPackage. http://www.comlab.ox.ac.uk/people/Sheehan.Olver/projects/RHPackage.html; S. Olver, RHPackage. http://www.comlab.ox.ac.uk/people/Sheehan.Olver/projects/RHPackage.html
[14] Olver, F. W.J.; Lozier, D. W.; Boisvert, R. F.; Clarke, C. W., NIST Handbook of Mathematical Functions (2010), Cambridge University Press · Zbl 1198.00002
[15] Saff, E. B.; Totik, V., Logarithmic Potentials with External Fields (1997), Springer · Zbl 0881.31001
[16] Trefethen, L. N., Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Rev., 50, 67-87 (2008) · Zbl 1141.65018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.