×

Computing the Hilbert transform and its inverse. (English) Zbl 1226.65103

The author constructs a new method for approximating Hilbert transforms and their inverse in the complex plane. The theory is based on Riemann-Hilbert problems by using of Plemelj’s lemma. Existing approaches are rederived for computing Hilbert transforms and taken advantage that one can use the Hilbert transforms in the complex plane. First the method is demonstrated on the half line. Combining two half lines, the Hilbert transform can be computed for a more general class of functions on the real line than it is possible with existing methods.

MSC:

65R10 Numerical methods for integral transforms
65E05 General theory of numerical methods in complex analysis (potential theory, etc.)
30E20 Integration, integrals of Cauchy type, integral representations of analytic functions in the complex plane
44A15 Special integral transforms (Legendre, Hilbert, etc.)
Full Text: DOI

References:

[1] Mark J. Ablowitz and Athanassios S. Fokas, Complex variables: introduction and applications, 2nd ed., Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2003. · Zbl 1088.30001
[2] Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. · Zbl 0171.38503
[3] S. Aksenov, M.A. Savageau, U.D. Jentschura, J. Becher, G. Soff, and P.J. Mohr, Application of the combined nonlinear-condensation transformation to problems in statistical analysis and theoretical physics, Comp. Phys. Comm. 150 (2003), 1-20.
[4] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. · Zbl 0052.29502
[5] T. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech. 29 (1967), 559-562. · Zbl 0147.46502
[6] Jean-Paul Berrut and Lloyd N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev. 46 (2004), no. 3, 501 – 517. · Zbl 1061.65006 · doi:10.1137/S0036144502417715
[7] S. Jonathan Chapman and Jean-Marc Vanden-Broeck, Exponential asymptotics and gravity waves, J. Fluid Mech. 567 (2006), 299 – 326. · Zbl 1177.76044 · doi:10.1017/S0022112006002394
[8] C. W. Clenshaw and A. R. Curtis, A method for numerical integration on an automatic computer, Numer. Math. 2 (1960), 197 – 205. · Zbl 0093.14006 · doi:10.1007/BF01386223
[9] M. C. De Bonis, B. Della Vecchia, and G. Mastroianni, Approximation of the Hilbert transform on the real semiaxis using Laguerre zeros, Proceedings of the 9th International Congress on Computational and Applied Mathematics (Leuven, 2000), 2002, pp. 209 – 229. · Zbl 0998.65129 · doi:10.1016/S0377-0427(01)00529-5
[10] P. A. Deift, Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lecture Notes in Mathematics, vol. 3, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. · Zbl 0997.47033
[11] Athanassios S. Fokas, Alexander R. Its, Andrei A. Kapaev, and Victor Yu. Novokshenov, Painlevé transcendents, Mathematical Surveys and Monographs, vol. 128, American Mathematical Society, Providence, RI, 2006. The Riemann-Hilbert approach. · Zbl 1111.34001
[12] Stefan L. Hahn, Hilbert transforms in signal processing, The Artech House Signal Processing Library, Artech House, Inc., Boston, MA, 1996. · Zbl 0910.94003
[13] Nicholas J. Higham, The numerical stability of barycentric Lagrange interpolation, IMA J. Numer. Anal. 24 (2004), no. 4, 547 – 556. · Zbl 1067.65016 · doi:10.1093/imanum/24.4.547
[14] Arieh Iserles and Syvert P. Nørsett, Efficient quadrature of highly oscillatory integrals using derivatives, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2005), no. 2057, 1383 – 1399. · Zbl 1145.65309 · doi:10.1098/rspa.2004.1401
[15] Frederick W. King, Hilbert transforms. Vol. 1, Encyclopedia of Mathematics and its Applications, vol. 124, Cambridge University Press, Cambridge, 2009. · Zbl 1188.44005
[16] Frederick W. King, Hilbert transforms. Vol. 2, Encyclopedia of Mathematics and its Applications, vol. 125, Cambridge University Press, Cambridge, 2009. · Zbl 1188.44005
[17] Frederick W. King, Gregory J. Smethells, Geir T. Helleloid, and Paul J. Pelzl, Numerical evaluation of Hilbert transforms for oscillatory functions: a convergence accelerator approach, Comput. Phys. Comm. 145 (2002), no. 2, 256 – 266. · Zbl 0998.65128 · doi:10.1016/S0010-4655(02)00155-8
[18] H. Kober, A note on Hilbert transforms, Quart. J. Math., Oxford Ser. 14 (1943), 49 – 54. · Zbl 0063.03275
[19] N. I. Muskhelishvili, Singular integral equations, Noordhoff International Publishing, Leyden, 1977. Boundary problems of function theory and their application to mathematical physics; Revised translation from the Russian, edited by J. R. M. Radok; Reprinted of the 1958 edition. · Zbl 0108.29203
[20] Mohamed M. S. Nasser, Numerical solution of the Riemann-Hilbert problem, Punjab Univ. J. Math. (Lahore) 40 (2008), 9 – 29. · Zbl 1226.65114
[21] Sheehan Olver, Moment-free numerical integration of highly oscillatory functions, IMA J. Numer. Anal. 26 (2006), no. 2, 213 – 227. · Zbl 1106.65021 · doi:10.1093/imanum/dri040
[22] Sheehan Olver, Moment-free numerical approximation of highly oscillatory integrals with stationary points, European J. Appl. Math. 18 (2007), no. 4, 435 – 447. · Zbl 1153.65325 · doi:10.1017/S0956792507007012
[23] S. Olver, Numerical solution of Riemann-Hilbert problems: Painlevé II, to appear in Found. Comput. Maths, DOI:10:1007/S10208-010-9079-8. · Zbl 1214.30026
[24] Hiroaki Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 (1975), no. 4, 1082 – 1091. · Zbl 1334.76027 · doi:10.1143/JPSJ.39.1082
[25] Lloyd N. Trefethen, Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Rev. 50 (2008), no. 1, 67 – 87. · Zbl 1141.65018 · doi:10.1137/060659831
[26] Rudolf Wegmann, Discrete Riemann-Hilbert problems, interpolation of simply closed curves, and numerical conformal mapping, J. Comput. Appl. Math. 23 (1988), no. 3, 323 – 352. · Zbl 0644.30004 · doi:10.1016/0377-0427(88)90005-2
[27] J. A. C. Weideman, Computing the Hilbert transform on the real line, Math. Comp. 64 (1995), no. 210, 745 – 762. · Zbl 0830.65127
[28] R. Wong, Asymptotic expansion of the Hilbert transform, SIAM J. Math. Anal. 11 (1980), no. 1, 92 – 99. · Zbl 0431.44002 · doi:10.1137/0511007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.