×

KdV geometric flows on Kähler manifolds. (English) Zbl 1237.35143

For any smooth map \(u_0\) from \(\mathbb{S}^1 \times \mathbb{R}\) into a K”ahler manifold \(N\) with complex structure \(J\) and metric \(h\), the authors define a KdV geometric flow as the Cauchy problem: \[ \frac{\partial u}{\partial t} = \nabla^2_x u_x + \frac{1}{2} R(u_x, J_uu_x)J_uu_x,\quad u(x,0)=u_0(x). \] Here \(R\) is the Riemannian curvature tensor on \(N\) and \(J_u=J(u)\). It is shown that the above Cauchy problem has short time existence of solutions in suitable Sobolev spaces. Moreover, long time existence of solutions is shown when \((N, J, h)\) is a certain type of locally Hermitian space due to conservation laws additional to the ones which hold on Kähler manifolds.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] DOI: 10.1088/0305-4470/20/6/021 · Zbl 0642.58034 · doi:10.1088/0305-4470/20/6/021
[2] DOI: 10.1002/(SICI)1097-0312(200005)53:5<590::AID-CPA2>3.0.CO;2-R · Zbl 1028.35134 · doi:10.1002/(SICI)1097-0312(200005)53:5<590::AID-CPA2>3.0.CO;2-R
[3] DOI: 10.1090/S0894-0347-03-00421-1 · Zbl 1025.35025 · doi:10.1090/S0894-0347-03-00421-1
[4] DOI: 10.1007/BF03018608 · JFM 37.0764.01 · doi:10.1007/BF03018608
[5] DOI: 10.1007/BF02901957 · Zbl 0918.53017 · doi:10.1007/BF02901957
[6] DOI: 10.1007/BF02877074 · Zbl 1019.53032 · doi:10.1007/BF02877074
[7] DOI: 10.2307/2373037 · Zbl 0122.40102 · doi:10.2307/2373037
[8] Friedman A., Partial Differential Equations of Parabolic Type (1964) · Zbl 0144.34903
[9] DOI: 10.1007/BF01214664 · Zbl 0563.35062 · doi:10.1007/BF01214664
[10] DOI: 10.1017/S0022112091001143 · Zbl 0719.76020 · doi:10.1017/S0022112091001143
[11] Gerdjikov V., SIGMA 4 pp 29–
[12] DOI: 10.1002/cpa.20143 · Zbl 1144.53085 · doi:10.1002/cpa.20143
[13] Hasegawa A., IEEE J. Quantum Electron. 23 pp 510–
[14] DOI: 10.1017/S0022112072002307 · Zbl 0237.76010 · doi:10.1017/S0022112072002307
[15] DOI: 10.1090/gsm/034 · doi:10.1090/gsm/034
[16] DOI: 10.1063/1.1666399 · Zbl 0257.35052 · doi:10.1063/1.1666399
[17] DOI: 10.1007/BF01008354 · doi:10.1007/BF01008354
[18] DOI: 10.1080/03605300600856758 · Zbl 1122.35138 · doi:10.1080/03605300600856758
[19] DOI: 10.1063/1.1664700 · Zbl 0283.35018 · doi:10.1063/1.1664700
[20] Moffatt K., The Global Geometry of Turbulence (1991)
[21] DOI: 10.1137/S0036141094273799 · Zbl 0858.35100 · doi:10.1137/S0036141094273799
[22] DOI: 10.1007/s12220-008-9023-1 · Zbl 1146.53041 · doi:10.1007/s12220-008-9023-1
[23] DOI: 10.4310/CAG.2002.v10.n4.a1 · Zbl 1032.53057 · doi:10.4310/CAG.2002.v10.n4.a1
[24] DOI: 10.1007/978-1-4757-6434-5 · doi:10.1007/978-1-4757-6434-5
[25] DOI: 10.1038/352561a0 · doi:10.1038/352561a0
[26] DOI: 10.2140/apde.2009.2.187 · Zbl 1191.35258 · doi:10.2140/apde.2009.2.187
[27] DOI: 10.1002/sapm198572165 · Zbl 0584.58022 · doi:10.1002/sapm198572165
[28] Shen C., Chinese J. Contemp. Math. 18 pp 207–
[29] DOI: 10.1007/BF01220998 · Zbl 0614.35087 · doi:10.1007/BF01220998
[30] DOI: 10.2977/prims/1195145146 · Zbl 0905.35070 · doi:10.2977/prims/1195145146
[31] Taylor M. E., Partial Differential Equations III: Nonlinear Equations (1997)
[32] Terng C., J. Differential Geom. 45 pp 407– · Zbl 0877.53022 · doi:10.4310/jdg/1214459804
[33] DOI: 10.1002/(SICI)1097-0312(200001)53:1<1::AID-CPA1>3.0.CO;2-U · Zbl 1031.37064 · doi:10.1002/(SICI)1097-0312(200001)53:1<1::AID-CPA1>3.0.CO;2-U
[34] C. Terng and K. Uhlenbeck, Integrable Systems, Geometry, and Topology, AMS/IP Studies in Advanced Mathematics 36 (American Mathematical Society, Providence, RI, 2006) pp. 235–256. · doi:10.1090/amsip/036/06
[35] DOI: 10.1016/j.anihpc.2009.03.004 · Zbl 1180.35492 · doi:10.1016/j.anihpc.2009.03.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.