×

Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data. (English) Zbl 1180.35492

Summary: We study the Cauchy problem for the generalized elliptic and non-elliptic derivative nonlinear Schrödinger equations (DNLS) and get the global well posedness of solutions with small data in modulation spaces \(M_{2,1}^s(\mathbb R^n)\). Noticing that \(B_{2,1}^{s+n/2}\subset M_{2,1}^s\subset B_{2,1}^s\) are optimal inclusions, we have shown the global well posedness of DNLS with a class of rough data. As a by-product, the existence of the scattering operators in modulation spaces with small data is also obtained.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35B45 A priori estimates in context of PDEs
81U99 Quantum scattering theory

References:

[1] Bergh, J.; Löfström, J., Interpolation Spaces (1976), Springer-Verlag · Zbl 0344.46071
[2] Bejenaru, I.; Tataru, D., Large data local solutions for the derivative NLS equation · Zbl 1250.35160
[3] Chihara, H., Global existence of small solutions to semilinear Schrödinger equations with gauge invariance, Publ. Res. Inst. Math. Sci., 31, 731-753 (1995) · Zbl 0847.35126
[4] Chihara, H., The initial value problem for cubic semilinear Schrödinger equations with gauge invariance, Publ. Res. Inst. Math. Sci., 32, 445-471 (1996) · Zbl 0870.35095
[5] Christ, M., Illposedness of a Schrödinger equation with derivative regularity (2003), preprint
[6] Christ, M.; Kiselev, A., Maximal functions associated to filtrations, J. Funct. Anal., 179, 406-425 (2001) · Zbl 0974.47025
[7] Constantin, P.; Saut, J. C., Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1, 413-446 (1988) · Zbl 0667.35061
[8] Clarkson, P. A.; Tuszynski, J. A., Exact solutions of the multidimensional derivative nonlinear Schrödinger equation for many-body systems near criticality, J. Phys. A: Math. Gen., 23, 4269-4288 (1990) · Zbl 0738.35090
[9] Ding, Wei-Yue; Wang, You-De, Schrödinger flow of maps into symplectic manifolds, Sci. China Ser. A, 41, 746-755 (1998) · Zbl 0918.53017
[10] Dixon, J. M.; Tuszynski, J. A., Coherent structures in strongly interacting many-body systems: II. Classical solutions and quantum fluctuations, J. Phys. A: Math. Gen., 22, 4895-4920 (1989) · Zbl 0714.70021
[11] H.G. Feichtinger, Modulation spaces on locally compact Abelian group, Technical Report, University of Vienna, 1983, in: Proc. Internat. Conf. on Wavelet and Applications, New Delhi Allied Publishers, India, 2003, pp. 99-140, http://www.unive.ac.at/nuhag-php/bibtex/open_files/fe03-1_modspa03.pdf; H.G. Feichtinger, Modulation spaces on locally compact Abelian group, Technical Report, University of Vienna, 1983, in: Proc. Internat. Conf. on Wavelet and Applications, New Delhi Allied Publishers, India, 2003, pp. 99-140, http://www.unive.ac.at/nuhag-php/bibtex/open_files/fe03-1_modspa03.pdf
[12] Ionescu, A.; Kenig, C. E., Low-regularity Schrödinger maps, II: Global well posedness in dimensions \(d \geqslant 3\), Comm. Math. Phys., 271, 523-559 (2007) · Zbl 1137.35068
[13] Kenig, C. E.; Ponce, G.; Vega, L., Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40, 253-288 (1991)
[14] Kenig, C. E.; Ponce, G.; Vega, L., Small solutions to nonlinear Schrodinger equation, Ann. Inst. H. Poincaré Sect. C, 10, 255-288 (1993) · Zbl 0786.35121
[15] Kenig, C. E.; Ponce, G.; Vega, L., Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math., 134, 489-545 (1998) · Zbl 0928.35158
[16] Kenig, C. E.; Ponce, G.; Vega, L., The Cauchy problem for quasi-linear Schrodinger equations, Invent. Math., 158, 343-388 (2004) · Zbl 1177.35221
[17] Kenig, C. E.; Ponce, G.; Rolvent, C.; Vega, L., The genereal quasilinear untrahyperbolic Schrodinger equation, Adv. Math., 206, 402-433 (2006) · Zbl 1122.35137
[18] Klainerman, S., Long-time behavior of solutions to nonlinear evolution equations, Arch. Ration. Mech. Anal., 78, 73-98 (1982) · Zbl 0502.35015
[19] Klainerman, S.; Ponce, G., Global small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math., 36, 133-141 (1983) · Zbl 0509.35009
[20] Linares, F.; Ponce, G., On the Davey-Stewartson systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10, 523-548 (1993) · Zbl 0807.35136
[21] Molinet, L.; Ribaud, F., Well-posedness results for the generalized Benjamin-Ono equation with small initial data, J. Math. Pures Appl., 83, 277-311 (2004) · Zbl 1084.35094
[22] Ozawa, T.; Zhai, J., Global existence of small classical solutions to nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25, 303-311 (2008) · Zbl 1143.35370
[23] Shatah, J., Global existence of small classical solutions to nonlinear evolution equations, J. Differential Equations, 46, 409-423 (1982) · Zbl 0518.35046
[24] Sjölin, P., Regularity of solutions to the Schrödinger equations, Duke Math. J., 55, 699-715 (1987) · Zbl 0631.42010
[25] Smith, H. F.; Sogge, C. D., Global Strichartz estimates for nontrapping perturbations of Laplacian, Comm. Partial Differential Equations, 25, 2171-2183 (2000) · Zbl 0972.35014
[26] Sugimoto, M.; Tomita, N., The dilation property of modulation spaces and their inclusion relation with Besov spaces, J. Funct. Anal., 248, 79-106 (2007) · Zbl 1124.42018
[27] Tuszynski, J. A.; Dixon, J. M., Coherent structures in strongly interacting many-body systems: I. Derivation of dynamics, J. Phys. A: Math. Gen., 22, 4877-4894 (1989) · Zbl 0714.70020
[28] Toft, J., Continuity properties for modulation spaces, with applications to pseudo-differential calculus, I, J. Funct. Anal., 207, 399-429 (2004) · Zbl 1083.35148
[29] Triebel, H., Theory of Function Spaces (1983), Birkhäuser-Verlag · Zbl 0546.46028
[30] Wang, B. X.; Zhao, L. F.; Guo, B. L., Isometric decomposition operators, function spaces \(E_{p, q}^\lambda\) and applications to nonlinear evolution equations, J. Funct. Anal., 233, 1-39 (2006) · Zbl 1099.46023
[31] Wang, B. X.; Hudzik, H., The global Cauchy problem for the NLS and NLKG with small rough data, J. Differential Equations, 231, 36-73 (2007) · Zbl 1121.35132
[32] Wang, B. X.; Huang, C. Y., Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations, J. Differential Equations, 239, 213-250 (2007) · Zbl 1219.35289
[33] Wang, B. X.; Wang, Y. Z., Global well posedness and scattering for the elliptic and non-elliptic derivative nonlinear Schrödinger equations with small data, preprint
[34] Vega, L., The Schrödinger equation: Pointwise convergence to the initial data, Proc. Amer. Math. Soc., 102, 874-878 (1988) · Zbl 0654.42014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.