×

Notes on limits of Sobolev spaces and the continuity of interpolation scales. (English) Zbl 1095.46015

The author extends lemmas by J. Bourgain, H. Brezis amd P. Mironescu [in: Optimal control and partial differential equations, Proceedings of the conference, Paris, France, December 4, 2000, IOS Press, Amsterdam, 439–455 (2001; Zbl 1103.46310)] who proved that \[ \lim_{s\rightarrow1}(1-s)^{1/p}\| f\| _{W_{0}^{s,p} (\mathbb{R}^{n})}\simeq\| \nabla f\| _{L^{p}(\mathbb{R}^{n})} \] and V. G.Maz’ya and T. O.Shaposhnikova [J.Funct.Anal.195, No. 2, 230–238 (2002; Zbl 1028.46050)] who proved that \[ \lim_{s\rightarrow0}s^{1/p}\| f\| _{W_{0}^{s,p}(\mathbb{R}^{n} )}\simeq \| f\| _{L^{p}(\mathbb{R}^{n})} \] to the setting of interpolation scales. For the real interpolation method, the following is shown (a similar result is obtained for complex interpolation). Suppose that \(\vec{X}=(X_{0},X_{1})\) is a normal pair. Then
(1) For \(1\leq q<\infty,\) \(f\in X_{0}\cap X_{1}\), we have that \[ \lim_{s\rightarrow1}\| f\| _{\vec{X}_{\theta,q}}=\| f\| _{X_{1}}. \]
(2) For \(1\leq q<\infty\), \(f\in X_{0}\cap X_{1}\), we have that \[ \lim_{s\rightarrow0}\| f\| _{\vec{X}_{\theta,q}}=\| f\| _{X_{0}}. \]
(3) For \(1\leq q<\infty,\) \(f\in X_{0}\cap( \bigcup_{s\in(0,1)}{\vec X}_{s,q})\), we have that \[ \lim_{s\rightarrow0}\| f\| _{\vec{X}_{\theta,q}}=\| f\| _{X_{0}}. \]
The Bourgain–Brezis–Mironescu result [op.cit.] follows from this theorem using that \[ (1-s)^{1/p}\| f\| _{W_{0}^{s,p}(\mathbb{R}^{n})}\simeq (n+sp)^{1/p}p^{-1/p}(L^{p}(\mathbb{R}^{n}),W_{0}^{1,p}(\mathbb{R} ^{n})) _{s,p}. \]
Similarly, one also recovers the resul of V. G.Maz’ya and T. O.Shaposhnikovat [op.cit.], since \[ s^{1/p}\| f\| _{W_{0}^{s,p}(\mathbb{R}^{n})}\simeq p^{-1/p} n^{1/p} (L^{p}(\mathbb{R}^{n}),W_{0}^{1,p}(\mathbb{R}^{n})) _{s,p}. \]
Several connections with extrapolation theory and new applications to limits of Sobolev scales are also obtained.

MSC:

46B70 Interpolation between normed linear spaces
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
26D10 Inequalities involving derivatives and differential and integral operators
Full Text: DOI

References:

[1] Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. · Zbl 0314.46030
[2] Jesús Bastero, Mario Milman, and Francisco J. Ruiz, On sharp reiteration theorems and weighted norm inequalities, Studia Math. 142 (2000), no. 1, 7 – 24. · Zbl 1001.46011
[3] Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. · Zbl 0647.46057
[4] Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223. · Zbl 0344.46071
[5] J. Bourgain, H. Brézis and P. Mironescu, Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations a volume in honour of A. Bensoussan’s 60\(^{th}\) birthday, IOS Press, 2001, pp. 439-455.
[6] Kh. Brezis, How to recognize constant functions. A connection with Sobolev spaces, Uspekhi Mat. Nauk 57 (2002), no. 4(346), 59 – 74 (Russian, with Russian summary); English transl., Russian Math. Surveys 57 (2002), no. 4, 693 – 708. · doi:10.1070/RM2002v057n04ABEH000533
[7] Yu. A. Brudnyĭ and N. Ya. Krugljak, Interpolation functors and interpolation spaces. Vol. I, North-Holland Mathematical Library, vol. 47, North-Holland Publishing Co., Amsterdam, 1991. Translated from the Russian by Natalie Wadhwa; With a preface by Jaak Peetre. · Zbl 0743.46082
[8] A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113 – 190. · Zbl 0204.13703
[9] Michael Cwikel, Monotonicity properties of interpolation spaces, Ark. Mat. 14 (1976), no. 2, 213 – 236. · Zbl 0339.46024 · doi:10.1007/BF02385836
[10] Michael Cwikel, Complex interpolation spaces, a discrete definition and reiteration, Indiana Univ. Math. J. 27 (1978), no. 6, 1005 – 1009. · Zbl 0409.46067 · doi:10.1512/iumj.1978.27.27068
[11] Michael Cwikel and Svante Janson, Real and complex interpolation methods for finite and infinite families of Banach spaces, Adv. in Math. 66 (1987), no. 3, 234 – 290. · Zbl 0646.46070 · doi:10.1016/0001-8708(87)90036-3
[12] Michael Cwikel, Nigel Kalton, Mario Milman, and Richard Rochberg, A unified theory of commutator estimates for a class of interpolation methods, Adv. Math. 169 (2002), no. 2, 241 – 312. · Zbl 1022.46017 · doi:10.1006/aima.2001.2061
[13] M. Cwikel, M. Milman, and Y. Sagher, Complex interpolation of some quasi-Banach spaces, J. Funct. Anal. 65 (1986), no. 3, 339 – 347. · Zbl 0586.46054 · doi:10.1016/0022-1236(86)90023-6
[14] Michael Cwikel, Per G. Nilsson, and Gideon Schechtman, Interpolation of weighted Banach lattices. A characterization of relatively decomposable Banach lattices, Mem. Amer. Math. Soc. 165 (2003), no. 787, vi+127. · Zbl 1044.46018 · doi:10.1090/memo/0787
[15] Michael Cwikel and Amal Sharif, Complex interpolation spaces generated by the Gagliardo completion of an arbitrary Banach couple, Interpolation spaces and related topics (Haifa, 1990) Israel Math. Conf. Proc., vol. 5, Bar-Ilan Univ., Ramat Gan, 1992, pp. 57 – 59. · Zbl 0918.46069
[16] Ronald A. DeVore and George G. Lorentz, Constructive approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. · Zbl 0797.41016
[17] M. E. Gomez and M. Milman, Extrapolation spaces and almost-everywhere convergence of singular integrals, J. London Math. Soc. (2) 34 (1986), no. 2, 305 – 316. · Zbl 0644.42014 · doi:10.1112/jlms/s2-34.2.305
[18] Svante Janson, Minimal and maximal methods of interpolation, J. Funct. Anal. 44 (1981), no. 1, 50 – 73. · Zbl 0492.46059 · doi:10.1016/0022-1236(81)90004-5
[19] Björn Jawerth and Mario Milman, Extrapolation theory with applications, Mem. Amer. Math. Soc. 89 (1991), no. 440, iv+82. · Zbl 0733.46040 · doi:10.1090/memo/0440
[20] H. Johnen and K. Scherer, On the equivalence of the \?-functional and moduli of continuity and some applications, Constructive theory of functions of several variables (Proc. Conf., Math. Res. Inst., Oberwolfach, 1976) Springer, Berlin, 1977, pp. 119 – 140. Lecture Notes in Math., Vol. 571. · Zbl 0348.26005
[21] Nigel Kalton and Marius Mitrea, Stability results on interpolation scales of quasi-Banach spaces and applications, Trans. Amer. Math. Soc. 350 (1998), no. 10, 3903 – 3922. · Zbl 0902.46002
[22] Nigel J. Kalton and Mikhail I. Ostrovskii, Distances between Banach spaces, Forum Math. 11 (1999), no. 1, 17 – 48. · Zbl 0934.46017 · doi:10.1515/form.11.1.17
[23] G. Karadzhov and M. Milman, Extrapolation theory: new results and applications, J. Approx. Theory 133 (2005), 38-99. · Zbl 1081.46018
[24] V. I. Kolyada and A. Lerner, On limiting embeddings of Besov spaces, preprint. · Zbl 1090.46026
[25] S. G. Kreĭn, Yu. Ī. Petunīn, and E. M. Semënov, Interpolation of linear operators, Translations of Mathematical Monographs, vol. 54, American Mathematical Society, Providence, R.I., 1982. Translated from the Russian by J. Szűcs.
[26] Natan Krugljak and Mario Milman, A distance between orbits that controls commutator estimates and invertibility of operators, Adv. Math. 182 (2004), no. 1, 78 – 123. · Zbl 1228.46068 · doi:10.1016/S0001-8708(03)00074-4
[27] V. Maz\(^{\prime}\)ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal. 195 (2002), no. 2, 230 – 238. · Zbl 1028.46050 · doi:10.1006/jfan.2002.3955
[28] Jaak Peetre, Espaces d’interpolation et théorème de Soboleff, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 279 – 317 (French). · Zbl 0151.17903
[29] Jaak Peetre, New thoughts on Besov spaces, Mathematics Department, Duke University, Durham, N.C., 1976. Duke University Mathematics Series, No. 1. · Zbl 0356.46038
[30] Jaak Peetre, A counterexample connected with Gagliardo’s trace theorem, Comment. Math. Special Issue 2 (1979), 277 – 282. Special issue dedicated to Władysław Orlicz on the occasion of his seventy-fifth birthday. · Zbl 0442.46026
[31] Richard Rochberg, Function theoretic results for complex interpolation families of Banach spaces, Trans. Amer. Math. Soc. 284 (1984), no. 2, 745 – 758. · Zbl 0592.46064
[32] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[33] H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. Hans Triebel, Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library, vol. 18, North-Holland Publishing Co., Amsterdam-New York, 1978.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.